
Detecting and Characterizing
Self-Admitted Technical Debt:
A Systematic Literature Review

Altino Alves Júnior 

Abril 13rd, 2024 

A research by: 
● Altino Alves Júnior 
● Eduardo Figueiredo 
● Cleiton Tavares 

Introduction

01

What’s Technical Debt and SATD? 

Technical Debt

Ward Cunningham (1992) first introduced
the concept of considering the
“not-quite-right code” as a form of debt.
Technical debt is a metaphor introduced to
describe the situation where long-term
code quality is traded for short-term goals. 
 
● However, technical debt is not

always visible. 

4 
Cunningham, Ward. "The WyCash portfolio management system." ACM Sigplan Oops Messenger 4.2 (1992): 29-30.

Self-Admitted Technical Debt

Potdar and Shihab (2014) proposed the concept
of self-admitted technical debt (SATD), which
considers debt that is intentionally introduced. 

● i.e., Code that’s either incomplete, defective,
temporary or simply sub-optimal. 

Developers document this using code comments
or system messages. 

5 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31.

Impact

Impact on Software Quality

S Wehaibi, E Shihab, L Guerrouj examine the relation between self-admitted technical
debt and software quality by investigating whether: 

● Files with self-admitted technical debt have more defects compared to files
without self-admitted technical debt; 

● Self-admitted technical debt changes introduce future defects; 
● Self-admitted technical debt-related changes tend to be more difficult. 

6 

S. Wehaibi, E. Shihab and L. Guerrouj, "Examining the Impact of Self-Admitted Technical Debt on Software Quality," 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Osaka, Japan, 2016, pp. 179-188, doi: 10.1109/SANER.2016.72.

Protocol

02

Systematic Literature Review Protocol 

Systematic Literature Review

Concept

A Systematic Literature Review (SLR) is the way to identify, evaluate, and interpret all
available research relevant to a singular research question, topic area, and/or
interest. This involves executing a series of meticulously planned phases:  

I. planning; 
II. conducting; 
III. reporting. 

8 

Ana Melo, Roberta Fagundes, Valentina Lenarduzzi, and Wylliams Barbosa Santos. 2022. Identification and measurement of requirements technical debt in software
development: a systematic literature review. Journal of Systems and Software, 194, 111483.

Systematic Literature Review

The main goal is to explore and document all SATD
detection strategies reported and used in the literature.  

● Understand how different ways to detect and
classify whether a code comment is SATD, as
well as, if applicable, relevant characteristics
thereof. 

9 

Goal

Systematic Literature Review

Research Questions

RQ1. What are the SATD detection strategies proposed in literature? 
RQ2. How are SATD detection strategies evaluated? 
RQ2. How can the strategy be applied to SATD detection? 

10 

For this, study we have defined three general Research Questions (RQs),
described as follows: 

Systematic Literature Review

Research String

11 

(("SATD" OR "Self-Admitted Technical Debt")  
AND  

("detect" OR "mining" OR "identify")) 

As mentioned, the goal is to find the largest set of available for SATD strategy detection.
After a pilot study conducted with the aim of testing different search strings, finally, the
search string was consolidated as follows: 

Systematic Literature Review

Eletronic Data Sources

12 

The goal of this study is to find largest set of available for SATD strategy detection. Initially,
a pilot study was conducted with the aim of testing different search strings, thus applying
different terms to all the bases mentioned. Therefore, the result was evaluated in each
database in order to identify which of the strings reached the largest possible number of
studies in the literature associated with the goal. Finally, the search string was consolidated. 

Systematic Literature Review

URL Amount

ACM Digital Library http://dl.acm.org/  39 

Engineering Village https://www.engineeringvillage.com  104 

IEEE Xplore http://ieeexplore.ieee.org/  91 

Scopus http://scopus.com/   73 

Springer http://link.springer.com/  900 

Web Of Science http://apps.webofknowledge.com/  60 

Electronic Data Sources 

13 

Inclusion and Exclusion Criterias

Study Selection Process 

14 

Systematic Literature Review

Inclusion Exclusion

Written in English  < 5 pages 

Published in conferences, journals,
workshops 

Thesis, dissertations, tutorials,
courses and magazines issues 

Available in electronic format   

Selection Procedure

Study Selection Process 

15 

Systematic Literature Review

Step 1 
Reading Title 

60 
Step 2 

Reading Abstract 

47 
Step 3 

Inclusion and Exclusion
Criterias 

41 
Step 4 

Introduction and
Conclusion 

34 
Step 5 e 6 
Snowballing + 

Full Paper 

39 

Detection

03

SATD detection methods and strategies 

Detection

In the life cycle of SATD, debt instances are first introduced by developers into
the source code. Thus naturally, the first step to study this phenomenon is to
identify it. 

“TODO: - This method is too complex, lets break it up” 

“Hack to allow entire URL to be provided in host field”  

from ArgoUml 

from JMeter 

17 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31. 
E. d. S. Maldonado, E. Shihab and N. Tsantalis, "Using Natural Language Processing to Automatically Detect Self-Admitted Technical Debt," in IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044-1062, 1 Nov. 2017, doi:
10.1109/TSE.2017.2654244.

 

18 
from JMeter | CSVRead.java File - Edited with Carbon 

Detection Strategies

Pattern-based approaches

One of the main study about, Potdar and Shihab (2014) finded 62 patterns and
made them publicly available to enable further research. 

● Some examples are: hack, fixme, is problematic, probably a bug, hope
everything will work, etc. 

19 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31.

Detection Strategies

SATD filtering heuristics

Removing licence
comments 

Removing
commented source

code 

#1 #2

Aggregating
consecutive

single-line comments 

#3 #4

Removing Javadoc
comments 

20 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31. 
E. d. S. Maldonado, E. Shihab and N. Tsantalis, "Using Natural Language Processing to Automatically Detect Self-Admitted Technical Debt," in IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044-1062, 1 Nov. 2017, doi:
10.1109/TSE.2017.2654244.

 

Detection Strategies

An alternative and extension to the pattern-based detection approach was later
proposed by de Freitas Farias et al. (2015), who introduced CVM-TD for
Identifying TD of different types in source code comments.  
 
This model relies on identifying word classes, namely: nouns, verbs, adverbs,
and adjectives that are related to Software Engineering terms and code tags. 

Contextualized Vocabulary Model

Pattern-based approaches 

21 

M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Contextualized Vocabulary Model

22 

M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Contextualized Vocabulary Model

23 

M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Text Mining

The process of exploring, analyzing and
transforming large amounts of unstructured text
data aided by software that can identify
concepts, patterns, topics, keywords and
other interesting attributes in the data. 

Doing so typically involves the use of natural
language processing (NLP) technology, which
applies computational linguistics principles to parse
and interpret data sets. 

24 

https://www.techtarget.com/searchenterpriseai/definition/computational-linguistics-CL

Detection Strategies

Refers to the branch of computer science, artificial intelligence – concerned with
giving computers the ability to understand text and spoken words in much the
same way human beings can. 
 
NLP combines computational linguistics with statistical, machine learning and
deep learning models. 

Natural Processing Language (NLP)

Machine learning approaches 

25 

Detection Strategies

Machine learning approaches

Huang et al. (2020) proposed an approach to automatically detect SATD using text
mining and a composite classifier, named Ensemble text mining approach. It’s root
concept is to determine if a comment indicates SATD or not based on training
comments from different software projects.  
 

● This approach preprocesses comments by tokenizing, removing
stop-words and stemming their descriptions to obtain textual features. 

26 

Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping L. SATD detector: a text-mining-based self-admitted technical debt detection tool. In Proceedings of International Conference on Software
Engineering: Companion Proceeedings (ICSE). Association for Computing Machinery, New York, NY, USA, 9–12. https://doi.org/10.1145/3183440.3183478 

Others

04

Comprehension and Future Work 

Comprehension

Example Project

Design Debt “/∗TODO: really should be a separate class ∗/”   ArgoUml 

Defect Debt “Bug in the above method”  Apache JMeter 

Requirement Debt “//TODO no methods yet for getClassname”  Apache Ant 

Documentation Debt “∗∗FIXME∗∗ This function needs documentation”  Columba 

Test Debt “//TODO enable some proper tests!!”  Apache JMeter 

Types of SATD 

28 

M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Conclusion + Future Work

29 

● Compilation of information to answer the RQs; 

● Writing the results section, including discussions,
graphics and tables; 

● Writing of other sections; 

● Text review. 

Thanks!
Do you have any questions?
altino@ufmg.br 

