
Self-Admitted
Technical Debt
Altino Alves Júnior 

October 23rd, 2023 

Introduction
01

What’s Technical Debt and SATD? 

Technical Debt

Ward Cunningham (1992) first introduced
the concept of considering the
“not-quite-right code” as a form of debt.
Technical debt is a metaphor introduced to
describe the situation where long-term
code quality is traded for short-term goals. 
 
● However, technical debt is not

always visible. 

3 
Cunningham, Ward. "The WyCash portfolio management system." ACM Sigplan Oops Messenger 4.2 (1992): 29-30.

Self-Admitted Technical Debt

Potdar and Shihab (2014) proposed the concept
of self-admitted technical debt (SATD), which
considers debt that is intentionally introduced. 

● i.e., Code that’s either incomplete, defective,
temporary or simply sub-optimal. 

Developers document this using code comments
or system messages. 

4 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31.

Detection
02

SATD detection methods and strategies 

Detection

In the life cycle of SATD, debt instances are first introduced by developers into
the source code. Thus naturally, the first step to study this phenomenon is to
identify it. 

“TODO: - This method is too complex, lets break it up” 

“Hack to allow entire URL to be provided in host field”  

from ArgoUml 

from JMeter 

6 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31. 
E. d. S. Maldonado, E. Shihab and N. Tsantalis, "Using Natural Language Processing to Automatically Detect Self-Admitted Technical Debt," in IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044-1062, 1 Nov. 2017, doi:
10.1109/TSE.2017.2654244.

 

7 
from JMeter | CSVRead.java File - Edited with Carbon 

Detection Strategies

Pattern-based approaches

One of the main study about, Potdar and Shihab (2014) finded 62 patterns and
made them publicly available to enable further research. 

● Some examples are: hack, fixme, is problematic, probably a bug, hope
everything will work, etc. 

8 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31.

Detection Strategies

SATD filtering heuristics

Removing licence
comments 

Removing
commented source

code 

#1 #2
Aggregating
consecutive

single-line comments 

#3 #4
Removing Javadoc

comments 

9 

A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted Technical Debt," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 2014, pp. 91-100, doi: 10.1109/ICSME.2014.31. 
E. d. S. Maldonado, E. Shihab and N. Tsantalis, "Using Natural Language Processing to Automatically Detect Self-Admitted Technical Debt," in IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044-1062, 1 Nov. 2017, doi:
10.1109/TSE.2017.2654244.

 

Detection Strategies

An alternative and extension to the pattern-based detection approach was later
proposed by de Freitas Farias et al. (2015), who introduced CVM-TD for
Identifying TD of different types in source code comments.  
 
This model relies on identifying word classes, namely: nouns, verbs, adverbs,
and adjectives that are related to Software Engineering terms and code tags. 

Contextualized Vocabulary Model

Pattern-based approaches 

10 
M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Contextualized Vocabulary Model

11 
M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Contextualized Vocabulary Model

12 
M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Text Mining

The process of exploring, analyzing and
transforming large amounts of unstructured text
data aided by software that can identify
concepts, patterns, topics, keywords and
other interesting attributes in the data. 

Doing so typically involves the use of natural
language processing (NLP) technology, which
applies computational linguistics principles to parse
and interpret data sets. 

13 

https://www.techtarget.com/searchenterpriseai/definition/computational-linguistics-CL

Detection Strategies

Refers to the branch of computer science, artificial intelligence – concerned with
giving computers the ability to understand text and spoken words in much the
same way human beings can. 
 
NLP combines computational linguistics with statistical, machine learning and
deep learning models. 

Natural Processing Language (NLP)

Machine learning approaches 

14 

Detection Strategies

Machine learning approaches

Huang et al. (2020) proposed an approach to automatically detect SATD using text
mining and a composite classifier, named Ensemble text mining approach. It’s root
concept is to determine if a comment indicates SATD or not based on training
comments from different software projects.  
 

● This approach preprocesses comments by tokenizing, removing
stop-words and stemming their descriptions to obtain textual features. 

15 

Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping L. SATD detector: a text-mining-based self-admitted technical debt detection tool. In Proceedings of International Conference on Software
Engineering: Companion Proceeedings (ICSE). Association for Computing Machinery, New York, NY, USA, 9–12. https://doi.org/10.1145/3183440.3183478 

Results
03

Comprehension, Impact and Future Work 

Comprehension

Example Project

Design Debt “/∗TODO: really should be a separate class ∗/”   ArgoUml 

Defect Debt “Bug in the above method”  Apache JMeter 

Requirement Debt “//TODO no methods yet for getClassname”  Apache Ant 

Documentation Debt “∗∗FIXME∗∗ This function needs documentation”  Columba 

Test Debt “//TODO enable some proper tests!!”  Apache JMeter 

Types of SATD 

17 

M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. d. Silva and R. O. Spínola, "A Contextualized Vocabulary Model for identifying technical debt on code comments," 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD), Bremen, Germany, 2015, pp. 25-32, doi: 10.1109/MTD.2015.7332621. 

Impact
Comment analysis considers contextual and
qualitative data that can complement
quantitative (based on metrics) and formal
(based on parsing) analysis executed during
automatic technical debt identification.
 

18 

Impact

Impact on Software Quality

S Wehaibi, E Shihab, L Guerrouj examine the relation between self-admitted technical
debt and software quality by investigating whether: 

● Files with self-admitted technical debt have more defects compared to files
without self-admitted technical debt; 

● Self-admitted technical debt changes introduce future defects; 
● Self-admitted technical debt-related changes tend to be more difficult. 

19 

S. Wehaibi, E. Shihab and L. Guerrouj, "Examining the Impact of Self-Admitted Technical Debt on Software Quality," 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Osaka, Japan, 2016, pp. 179-188, doi: 10.1109/SANER.2016.72.

Impact

Impact on Software Quality

And the results demonstrate that: 

● There is no clear trend when it comes to defects and self-admitted technical
debt, although the defectiveness of the technical debt files increases after the
introduction of technical debt;

● Self-admitted technical debt changes induce less future defects than none
technical debt changes;

● Self-admitted technical debt changes are more difficult to perform, i.e., they
are more complex.  

20 

S. Wehaibi, E. Shihab and L. Guerrouj, "Examining the Impact of Self-Admitted Technical Debt on Software Quality," 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Osaka, Japan, 2016, pp. 179-188, doi: 10.1109/SANER.2016.72.

Impact

Impact on Evolution

Wehaibi et al. (2019) investigated the relation between SATD and the quality of software
by looking at defects. To find defects, the change history of every subject was mined to
find patterns that indicate defects, such as: “defect”, “bug ID”, “fixed issue #ID”. The
study investigated:  

● The amount of defects in files with and without SATD;  
● The percentage of SATD related changes that are defect-inducing;  
● If changes that involve SATD files are more difficult than the ones that do

not. 

21 

Impact

Impact on Removal

Maldonado et al. (2017) studied precisely this, investing how much SATD is removed
from source code; who removes it; how long does it remain in a system; and what leads
to removal activities. 
 
Zampetti et al. (2018) conducted an in-depth quantitative and qualitative empirical study.
The authors investigated how much debt was removed by accident, i.e., without the
intention of resolving debt, but as a collateral of software evolution. 

22 
Zampetti, Fiorella, Alexander Serebrenik, and Massimiliano Di Penta. "Was self-admitted technical debt removal a real removal? an in-depth perspective." Proceedings of the 15th international conference on mining
software repositories. 2018. 

Conclusion + Future Work

23 

● Develop tools that enable a categorized visualization of
SATD to support its management; 

● Develop detection approaches that inspect and analyze
both, comments and source code for improved accuracy; 

● Proposing new approaches and techniques to mitigate
and repay debt; 

● Investigate new measures to estimate the effort required
to repay SATD; 

● Study the presence of SATD in other software artifacts,
such as the messages and descriptions of issues and
commits 

And much more… 

Thanks!
Do you have any questions?
altino@ufmg.br 

