
Tuning Code Smell Prediction Models: A Replication Study
Henrique Gomes Nunes
henrique.mg.bh@gmail.com

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Amanda Santana
amandads@dcc.ufmg.br

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Eduardo Figueiredo
figueiredo@dcc.ufmg.br

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Heitor Costa
heitor@ufla.br

Federal University of Lavras
Lavras, Minas Gerais, Brazil

ABSTRACT
Identifying code smells in projects is a non-trivial task, and it is
often a subjective activity since developers have different under-
standings about them. The use of machine learning techniques to
predict code smells is gaining attention. In this replication study,
our goals are: (i) verify if previous model’s performance maintain
when we extract data from updated systems; and (ii) explore and
provide evidences of how the use of different feature engineer-
ing and resampling techniques can enhance code smell prediction
model’s performance. For these purposes, we evaluate four smells:
God Class, Refused Bequest, Feature Envy and Long Method. We
first replicate a previous study that focus on the algorithm’s perfor-
mance to identify the best models for each smell using a different
dataset composed of 30 Java systems. This first experiment pro-
vides us a baseline model that is used in the second experiment.
In the second experiment, we compare the performance of the
baseline model with other models tuned with polynomial features
and resample techniques. Our main results are: for datasets with
imbalances lower than a ratio of 1:100, such as God Class and Long
Method, the use of oversample techniques yielded better results.
For datasets with more severe imbalance, like Refused Bequest and
Feature Envy, the undersample techniques performed better. The
feature selection technique, despite a minor impact on the results,
provided insights. For instance, we need new features to represent
some code smells, such as Long Method and Feature Envy.

KEYWORDS
Code Smells, Machine Learning, Replication Study

ACM Reference Format:
Henrique Gomes Nunes, Amanda Santana, Eduardo Figueiredo, and Heitor
Costa. . Tuning Code Smell Prediction Models: A Replication Study. In .
ACM, New York, NY, USA, 11 pages.

1 INTRODUCTION
Code smells are code structures that can compromise the internal
quality of systems [17]. Between 1990 and 2017, at least 351 stud-
ies were conducted on code smells, with detecting their structures
being the most prevalent focus, representing 30% of the total [45].
Those studies presented approximately 80 tools and techniques to
identify code smells [14, 45]. Several techniques to detect smells

,
.

in source code have been proposed, most based on software met-
rics and thresholds. However, to use thresholds, developers must
adjust them according to their context and system size. One way
to overcome the threshold limitation is to use machine learning
techniques to detect code smells.

To use machine learning, most models need a ground truth to
know beforehand which instances contain code smells. However,
building datasets is a non-trivial task and requires substantial effort
[43]. Another problem raised by machine learning modeling is
that code smell datasets are highly imbalanced [1, 10, 40], i.e., they
have more negative instances than positive ones. Several studies
used machine learning techniques to deal with imbalanced datasets
[18, 22]. To our knowledge, those studies did not try to understand
how different techniques and their parametrizations may impact
the model performance in predicting code smells. Furthermore,
most of the studies in the literature only use linear features [10];
thus, exploring polynomial features can lead to relevant research
studies.

This paper replicates a base study [10] to obtain new insights
into predicting code smells using machine learning on systems from
GitHub1. However, we further expand this study by evaluating the
impact of feature engineering and resample data techniques on the
machine learning model performance. For that task, we collected 30
Java software systems from Github and evaluated them using four
code smells (God Class, Refused Bequest, Feature Envy, and Long
Method). We have used five code smell detection tools to build our
ground truth.

The results highlight that the models achieved better prediction
capacity by reducing imbalance. In our study, models generated
by Decision Tree, Random Forest and Gradient Boosting Machine
achieved, in general, the best performance. The performance in
predicting the God Class and LongMethod code smells was superior,
and the performance was worse in predicting the Refused Bequest
and Feature Envy code smells. The Undersample technique was
better for caseswith higher imbalance, while oversample techniques
performed better for cases with less data imbalance. The Refused
Bequest and Long Method did not improve their performance when
adding new features at training. In God Class and Feature Envy,
feature selection indicated valuable insights, suggesting the need
for new ways of representing them.

The main contributions of this study were:

1https://github.com/

https://github.com/


, Nunes et al.

• Provide a public dataset with 50k classes and 295k method
instances, with ground truth for four types of code smell;

• Replicate a study using a dataset with more modern systems;
• Insights about feature selection, polynomial features, and
resample data.

The rest of this paper is structured as follows. Section 2 presents
a background for this study. Section 3 discusses the base study that
we replicated. Section 4 shows how we conducted the experiments.
Section 5 presents the results. Section 6 discusses the findings of
this study and how they can be useful for different actors. Section 7
shows threats to validity. Section 8 discusses related works. Section
9 includes the conclusion and ideas for future studies.

2 BACKGROUND
2.1 Code Smells
Code Smell is an indication that usually corresponds to a deeper
problem in the design or code structure of systems [17]. They con-
tribute directly to technical debt if overlooked and left unaddressed;
thus, successful long-term projects must avoid them. Code smells
are often detected using hard-coded rules in detection tools [14, 21].
Thus, code smells are code snippets (or several snippets) that nor-
mally correspond to a more extensive problem in the system [30].
Once such code smells are detected, increased focus must be placed
on them, as they will likely require extra effort during maintenance
and implementation of new features. Sometimes, such detection can
lead to reworking the module as refactoring [30]. Code smells have
been widely studied and associated with faults and bad-quality code
[7, 11, 19, 44, 51, 52]. We analyzed four code smells, where two are
related to classes (God Class - GC and Refused Bequest - RB), and
two are related to methods (Feature Envy - FE and Long Method -
LM). The God Class code smell represents a class with excessive
responsibilities, strongly indicating design flaws [37]. The Refused
Bequest code smell means a child class does not fully support all
the methods or data it inherits [17]. The Feature Envy code smell
indicates, for instance, that a method is more interested in a class
other than the one it is in [17]. One method with the Long Method
code smell is complex, including many data and responsibilities
[17].

2.2 Machine Learning
Several techniques have been proposed to identify code smells,
such as a combination of software metrics [27, 36, 48], the use of
historical data [39], refactoring opportunities [15], and machine
learning models [2, 10, 13, 41]. Machine learning approaches elimi-
nate constraints relying on metrics thresholds. Our study aims to
replicate previous study and evaluate the performance of seven ma-
chine learning algorithms, considering the impact of using different
resampling techniques, non-polynomial features, and hyperparam-
eters tuning. Exploring and presenting the results of different tech-
niques can bring insight into which one should be further evaluated
and adopted by the community.

Identifying code smells is a classification problem in which each
class/method of a project is analyzed and classified according to the
smells it contains [3]. Consequently, the models receive as input
a vector of features, in our case, software metrics. There are two
ways to learn: a supervised and unsupervised approach. Supervised

learning indicates that the model is trained based on the actual
classifications of the classes/methods, i.e., we need a ground truth
containing if the class/method is smelly or not to adjust the model.
Meanwhile, an unsupervised model separates the data according
to the available data, classifying the instances according to their
similarities. In this study, we evaluated seven supervised models:
Multi-Layer Perceptron (MLP) [20], Naïve Bayes (NB) [28], Logis-
tic Regression (LR) [23], Decision Trees (DT) [6], Random Forest
(RF) [5], Gradient Boosting Machine (GBM) [8], and K-Nearest
Neighbors (KNN) [9]. The selected models use different strategies,
for instance, conditional probability (NB), function modeling (LR),
tree-based algorithms (DT, RF, GBM), clustering (KNN), and neural
network (MLP). We further separated our data into training and un-
seen data. We used the training data to train and adjust the models,
enhancing their performance, and we used unseen data to evaluate
the performance of the models after training. Consequently, we did
not consider the instances on this part of the dataset in the training
since it avoids model overfitting.

3 STUDY REPLICATION
In this study, we replicated a previous study [10] on machine learn-
ing to detect code smells using different and currently maintained
systems from GitHub. Although modern systems deal better with
code smells, they are still very common, especially in collaborative
environments like Github. We expanded the replication to include
a study on the impact of varying the features and resampling tech-
niques used on the performance of models for detecting code smells.
For the rest of this paper, we addressed Cruz et al.’s manuscript
[10] as base study. Table 1 summarizes the study design of both
experiments. We highlighted different aspects of both studies in
italics.

Table 1: Experiments Comparison.

Category Base study Current

Projects 20, Qualita
Corpus[46]

30, GitHub

Datasets 35,600 (classes)
263,211 (methods)

50,765 (classes)
295,832 (methods)

Detection
Tools

JDeodorant, JSpirit,
Organic, PMD,

DECOR

JDeodorant, JSpirit,
Organic, PMD,

Designite

Algorithms DT, RF, NB, LR, KNN, MLP, GBM

Features
Selection 30 manual 22 manual, 5 auto
Resample Data No Yes
Measures F1 F1, ROC-AUC
Models Selection Randomized Search
Feature
Engineering None Polynomial Features



Tuning Code Smell Prediction Models: A Replication Study ,

Both studies evaluated the same seven machine learning algo-
rithms (Section 2.2) to predict four code smells (Section 2.1), chosen
based on their coverage in the literature [45]. The base study used
data from 20 Java software projects from Qualitas Corpus [46, 47].
Meanwhile, our replication evaluated 30 top-stared Java projects
from GitHub. We extracted 12 class and 10 method metrics using
the CK Metrics tool2; those metrics were our features. In addition,
we used five code smell detection tools to obtain information on
which class/method contained the code smells analyzed. However,
instead of the Decor tool [34] to detect the Refused Bequest and
Long Method code smells, we used the Designite tool [42]. For
the dataset construction, we used the same vote method as the
base study: class/method has the X code smell, whether at least
two out of the three detection tools identified that code smell in
the class/method. For the machine learning modeling, both studies
followed five steps:

• Data Separation: we split the dataset into two parts. The
first one compromises 80% of the whole data to use in the
training of the models, while the second one uses the re-
maining 20% of data for testing the models generated from
training data;

• Data Analysis: we ensure that only pertinent features are
maintained, through correlation analysis, mitigating overfit-
ting;

• Models Parametrization: the Random Search model se-
lection technique was used during training to improve the
models;

• Models Comparison: the F1metric was used in both studies
to determine themodels with the best performance. Addition-
ally, our study presented the AUC metric, a less restrictive
metric than the F1 metric;

• Test on UnseenData: the test data was given as input to the
best models of each machine learning algorithm to evaluate
the effectiveness in predicting each smell.

We also highlighted that both studies conducted feature selection
and feature engineering, in which we excluded highly correlated
features from the set of features since they can cause overfitting,
removed missing data from our dataset, and normalized the metric
values. However, we took a step further: we explored the impact
of using polynomial features (for creating a feature matrix with
polynomial combinations up to a specified degree) and different
resampling techniques, such as oversample and undersample. We
present more details in Section 4.

4 STUDY DESIGN
4.1 Research Questions
This study has two main goals. The first one is to complement
and check if the base study results apply to other projects from
GitHub, reflecting current trends in the collaborative developer
community. The second one is to explore how the resampling,
the feature selection, and the polynomial features impact on the
performance of code smell identification. The following research
questions guide our study:

2https://github.com/mauricioaniche/ck

• RQ1.Which machine learning algorithm performs better us-
ing resample data, feature selection, and polynomial features
techniques for popular GitHub projects?

• RQ2. To what extent can we use the mentioned techniques
to improve machine learning model training for popular
GitHub projects?

RQ1 aims to understand what algorithms for predicting code
smells perform best. Unlike the base study, we did the same task
with a different dataset. However, we tried to replicate the base
study design, but the authors did not make all design decisions clear
on the base study and its supplementary material. Consequently,
we filled these gaps in our study design based on our knowledge.

Several techniques and parametrizations can directly impact
the machine learning algorithm’s performance when identifying
code smells. Thus, to answer RQ2, we evaluated each of those
techniques individually to understand how their variation can posi-
tively/negatively impact the performance of code smell predictions.

4.2 GitHub Dataset
First, we have built a dataset from Java software projects, selecting
those currently maintained by the open-source GitHub community.
The criteria for choosing the software systems were: i) at least 80%
of its code is in Java; ii) the last update was in 2021 or later; iii)
broad recognition by the programming community (we selected
software projects with at least 1,000 stars in GitHub) [4]. Thus,
we trained our models with non-trivial software systems that uses
newer technologies, such as Continuous Integration/Continuous
Delivery (CI/CD) and gatekeepers.

Table 2 presents the information about the 30 selected software
projects. The first column presents the software system name and
the evaluated version. The second column shows the number of
classes of the software projects. The third and fourth columns
exhibit the number of two class code smells (God Class - GC and
Refused Bequest - RB, respectively). The fifth column shows the
number of methods of the software projects. The sixth and seventh
columns present the number of two method code smells (Feature
Envy -FE and Long Method - LM, respectively). Details about our
ground truth creation are present in Section 4.4. The last line of
Table 2 presents the total values from the second to seventh columns,
and values inside parentheses represent the proportion of smells in
relation to all elements. It is important to notice that the dataset
has a large imbalance, something common in other code smell
prediction studies [1, 10, 40].

4.3 Model Features
We used software metrics for this study as our data input, i.e., fea-
tures for the machine models. We selected them considering aspects
of software quality, such as coupling, cohesion, complexity, and
data abstraction [32]. We obtained those features using the CK
Metrics tool, like the base study. The base study authors discussed
which features they used in the study. In our study, we did the same:
we decided together what features could represent the aspects for
evaluation. First, we discussed which features can represent soft-
ware quality aspects related to the chosen code smells. Next, we
performed a correlation analysis of the features using Spearman’s

https://github.com/mauricioaniche/ck


, Nunes et al.

Table 2: Open-source Java projects statistics

Projects Classes GC RB Methods FE LM

Checkstyle 9.2 1,295 14 0 4,797 80 2
CoreNLP 4.3.2 4,295 310 22 33,718 673 202
Dbeaver 21.0.2 6,511 101 15 37,108 223 440
ElasticSearch Analysis 7.14.0 28 2 0 204 5 2
FastJson 1.2.76 6,328 31 2 21,491 247 90
Gson (no version) 816 9 0 2,553 67 11
Guava 30.1.1 6,477 146 38 29,480 69 18
Hikari 4.0.3 159 3 0 1,307 49 0
Java Faker 1.0.2 224 1 1 1,383 0 0
Jedis 3.7.0 903 10 3 7,291 128 9
Jenkins 2.287 3,898 55 19 17.887 125 27
Jitwatch 1.3.0 592 23 1 7,728 76 55
Jsoup 1.14.2 326 15 1 2,611 89 0
Junit 4.13.2 1,474 7 2 4,307 28 0
Libgdx 1.9.14 1,776 136 81 31,613 294 94
Mapstruct 1.4.2 3,857 21 1 13,798 134 1
Mockserver 5.11.2 995 25 4 7,227 342 13
Mybatis 3.5.6 1,540 18 2 7,533 138 8
NanoHttpd 2.3.1 145 6 0 715 8 1
Netty 1.7.18 157 3 0 758 10 0
Redisson 3.15.3 2,179 64 0 17,202 295 36
Retrofit 1.6.0 290 1 0 955 6 10
Shenyu 2.4.1 1,234 2 0 6,927 219 0
Shopizer 2.17.0 1,325 23 7 8,062 47 45
Spark 2.9.3 222 2 0 1,369 15 2
Vert.x 4.1.2 1,248 72 6 13,593 447 24
Webmagic 0.7.3 307 3 1 1,137 48 4
XDM 7.2.11 306 23 1 1,961 51 30
YsoSerial 0.0.5 121 0 0 366 4 0
Zookeeper 3.6.3 1,737 49 2 10,751 223 50

All Projects Classes GC RB Methods LM FE

Total 50,765 1175
(2.31%)

209
(0.41%) 295,832 4,140

(1.39%)
1,174
(0.39%)

correlation rank [26], like the base study, and, in the end, evalu-
ated all correlations higher than 0.8. Feature correlation analysis
helps prevent overfitting by identifying and removing redundant or
highly correlated variables, reducing model complexity. In the end,
we considered 49 class and 29 method metrics. After discussions
and removing highly correlated features, we obtained a subset of 12
class and 10 method features. The selected features and brief class
and method metrics descriptions are presented in Tables 3 and 4,
respectively.

4.4 Ground Truth Creation
After extracting and selecting features, we identified which classes
and methods present the analyzed code smells. In the literature,
different methods exist to detect those code smells. However, no
consensus exists on which metrics are best for each code smell,
nor what thresholds should be used [25, 43]. Our study used a
voting strategy to classify each code smell considered the following
five distinct tools to detect code smells: Designite [42], JDeodorant
[15], JSpirit [48], PMD [38], and Organic [36]. Our voting strategy
applied three different detection techniques for each smell for each
class and method.

Table 3: Classes Software Metrics

Metrics Description

DIT Depth Inheritance Tree counts the number of fathers a class has.
FANIN Counts the number of input dependencies a class has.
FANOUT Counts the number of output dependencies a class has.
LCC Loose Class Cohesion includes the number of indirect connections

between visible classes for the cohesion calculation. Low values of
cohesion are bad.

ILCOM Improved Lack of Cohesion in Methods measures the number of
connected components in a class.

LOC Lines of Code counts the number of lines in the class.
NOC Number of Children counts how many classes directly inherits from

this class.
RFC Response for a Class counts the total number of methods and the

number of methods which can be invoked by them.
ICQ Count the Inner Classes Quantity in a class.
TFQ Count the Total Fields Quantity in a class.
TMQ Count the Total Methods Quantity in a class.
WMC Weighted Method Count computes the weighted sum of the methods

implemented in a class, considering the weight as the cyclomatic
complexity [33] of the method.

Table 4: Methods Software Metrics

Metrics Description

FANIN Counts the number of input dependencies a method has.
FANOUT Counts the number of output dependencies a method has.
WMC Weighted Method Count computed in this case for only the own

method, it counts the cyclomatic complexity of itself.
LOC Lines of Code counts the number of lines in a method.
RQ Quantity of returns in a method.
VQ Quantity of Variables counts how many variables are declared in a

method.
PQ Size of Parameter List computes the number of parameters in a method.
LQ Quantity of Loops counts how many loops a method implements.
CQ Quantity of Anonymous Classes in a method.
ICQ Count the Inner Classes Quantity in a method.

Code smell detection tools have limitations, as each detects a
limited set of smells. We guaranteed that for each evaluated code
smell, three tools could detect it. If two (or more) tools detected the
code smell in the class/method, then we added that class/method
as a true positive in our dataset. We manually validated a sample
of the automatically classified smells and verified a precision rate
above 80%. Therefore, this voting strategy is reasonable for our
purposes.

Table 5 shows the relationships between the tool and which code
smells they detect. Each column is associated with one analyzed
code smells, and each line represents one of the five tools used in
the experiments. We use the "✓" symbol to represent that the tool
was used to detect the code smells.

4.5 Machine Learning Study Design
We focused our analysis on two performance metrics: F1 and AUC.
The Precision metric penalizes models with a large number of false
positives. The Recall metric penalizes false negatives. The F1 metric
is a harmonic mean of the Precision and Recall metrics and is a
way to penalize false positives and false negatives equally. That is,
the code smells prediction problem, the F1 metric equally penalizes



Tuning Code Smell Prediction Models: A Replication Study ,

Table 5: Detection Tools for Our Voting Strategy

Tools GC RF FE LM

PMD ✓

JDeodorant ✓ ✓ ✓

JSpirit ✓ ✓ ✓

Organic ✓ ✓ ✓

Designite ✓ ✓

(a) smelly classes/methods not identified by the models and (b) not
smelly classes/methods identified as smelly. The AUC metric plots
a curve on a two-dimensional graph, where the X-axis represents
the proportion of false positive results, and the Y-axis plots the
proportion of true positives. The larger the area under this curve,
the greater the model can correctly distinguish true positives and
false positives. In the case of code smell predictions, the AUCmetric
measures the ability of the models to correctly distinguish smelly
classes/methods from those incorrectly identified as smelly ones.
Based on the results of those metrics, we can rank which algorithms
achieved the best performance. However, we highlighted we have
also calculated the Accuracy, Recall, and Precisionmetrics (available
in the study documentation3).

Figure 1: Experiment Execution

Figure 1 presents the study execution steps: (1) Data Separation,
(2) Data Analysis, (3) Models Parametrization, (4) Models Compar-
ision, (5) Test on Unseen Data, and (6) Feature Engineering and
Resample Study. Our study and the base study share Steps 1 to 5,
and we added Step 6 to our study to evaluate the impact of Feature
Engineering and Resample techniques.

In the Data Separation step, we split the dataset into two parts
(80% and 20% of the data, respectively). We used the bigger part
to train the machine learning algorithms and the smaller to eval-
uate the effectiveness of the model trained on unseen data. The
Data Analysis step assures that only the relevant feature remains:
highly correlated data can bias the training [13]. We used Spear-
man’s correlation algorithm to eliminate similar features because
it is a nonparametric option. After, we removed instances that had
missing/invalid values. Finally, for more efficient training, we nor-
malized all feature values.

The model performance can vary depending on the dataset used
and the values of the algorithm parameters, known as hyperpa-
rameters. We can test multiple combinations of hyperparameters
to obtain the best results (the Models Parametrization step). How-
ever, manually testing all combinations is costly; thus, we used the
3https://github.com/labsoft-ufmg/ml_predictions_replication_2024

RandomizedSearch algorithm (similar to the base study) from the
Scikit-Learn4 library in Python. The algorithm tries to optimize
hyperparameters permutations by choosing samples randomly, gen-
erating several models for each permutation of hyperparameters,
and listing their performance, which allows us to identify the best
model for each situation. Since the base study authors did not clar-
ify the values used for the search, we empirically tested several
parameters for RandomizedSearch.

Another detail to highlight is all trained models used the tech-
niques of resampling data, feature selection, and polynomial fea-
tures. In the Models Parametrization step (Section 5.1), one of the
authors applied feature engineering and resample data techniques
with fixed values based on trial and error (we tested upper and
lower extremes using a decision tree). We selected the feature using
the SelectKBest5 class from Scikit-Learn, which selects features
according to the k highest scores (we fixed the k parameter as 5).
We used the PolynomialFeatures6 class with a polynomial of degree
2 for the polynomial feature techniques. We used the SelectKBest
class independently and in conjunction with the PolynomialFea-
tures class. In the second case, we created the polynomial features
after automatically selecting the features. We used the SMOTE7
and RandomUnderSampler8 classes for the resampling technique
because they have a strategy parameter that defines a "desired ratio
of the number of samples in the minority class over the number of
samples in the majority class after resampling". We defined the value
for the strategy parameter for both cases as 0.2. At this stage of the
experiment, the goal was not only to choose the correct parame-
ters but also to identify good candidate algorithms for correctly
detecting code smells so that we could later investigate the impact
of different feature engineering and resampling techniques on the
best models; consequently, we tried to enhance the performance of
the best models.

To train our models, we used the cross-validation technique,
which splits the training data into parts, and we performed the
algorithm training according to the number of pre-defined cuts. In
our case, we split into ten parts (k = 10). To evaluate the hyper-
parametrization performance in the Models Comparison step, we
selected the parameters that lead to the best F1 metric values. After
obtaining the optimal models for the seven evaluated algorithms,
we tested the optimal models against the Unseen Data. The F1 and
AUC metrics were the output of that step. This step predicts how
the models behave when we provide new instances to classify the
model.

The Evaluation on Test Data step output is input to the Feature
Engineering and Resample Study step. In that step, we chose ma-
chine learning algorithms with the best performance for code smell
prediction. We aimed to explore how different variations of fea-
ture quantities, polynomial features, and resample data can impact
the performance of the model. We used the SelectKBest class from

4https://scikit-learn.org/stable/
5https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
SelectKBest.html
6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
PolynomialFeatures.html
7https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.
SMOTE.html
8https://imbalanced-learn.org/stable/references/generated/imblearn.under_
sampling.RandomUnderSampler.html

https://github.com/labsoft-ufmg/ml_predictions_replication_2024
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html


, Nunes et al.

Scikit-Learn for the automatic selection of features. For the feature
engineering experiment, our k parameter ranged from 1 to the total
number of features for each dataset, i.e., 12 for the class and 10 for
the method. We carried out the feature selection experiment in two
ways. First, we selected only the k features with the highest scores
per interaction. Second, we made the same selection of the first step
and next applied the polynomial features function. We chose to do
it this way, considering that the features are first collected realisti-
cally, and then new features are created based on existing data. We
used both resample techniques (oversample and undersample) to
evaluate their impact on balancing the dataset. The strategy value
ranges from 0, where the majority data remains untouched during
undersampling or synthetic minority data is not generated dur-
ing oversampling, to 1, where the undersampling entirely removes
majority data, or the oversampling equalizes minority data to the
majority.

5 RESULTS
This section reports the performance of themodels in classifying the
unseen instances on our test data. Section 5.1 presents the replica-
tion of the base study [10]. We called our replication of the baseline
model experiment since we compared them with further model en-
hancements. Sections 5.2 and 5.3 report the experiments to evaluate
the variation of feature engineering and resample techniques. We
chose the best models found in Section 5.1 for those experiments,
where the parameters of those classes varied to evaluate their im-
pact on predicting code smells. Due to space limitations, we only
discussed the relevant results in this paper. The source codes used
in the experiments and the tabulated results are available in the
experiment documentation9.

5.1 Baseline Model Experiment
The baseline model experiment used feature engineering and re-
sample data techniques with fixed parameter values to identify
algorithms with better code smell prediction performance. Figure 2
presents the F1 and AUC metrics performance for the best models
obtained for each of the seven algorithms for each code smell evalu-
ated. The X-axis is the algorithm initials, and the Y-axis represents
the values obtained for each performance metric: the blue bar repre-
sents the F1 metric, and the orange bar represents the AUC metric.
In both cases, the closer to 1.0, the better the prediction capacity.
However, it is important to note that the minimum value (the worst
case) starts at 0.5 for the AUC metric, while the minimum value of
the F1 metric is 0.0.

Table 6 presents the results of the three best algorithms for each
code smell for the F1 and AUC metrics. The first column lists the
code smells. The second and third columns list the algorithms that
generated the models with the best F1 and AUC metrics results,
respectively. The fourth column presents the algorithm chosen for
experiments with feature engineering and resample data, in the
next step. The complete results are accessible in the experiment
documentation.

The God Class code smell had the best results in this experiment.
Regarding the F1 metric, the RF and GBM algorithms generated
the best models with a performance of 0.72 and the DT algorithm
9https://github.com/labsoft-ufmg/ml_predictions_replication_2024

Table 6: Base Line Experiment - Best Results

Code
Smells

Highest F1 Highest AUC Chosen Algorithm

GC RF (.72), GBM (.72),
DT (.71)

DT (.96), RF (.95),
GBM (.95)

DT

RB DT (.10), RF (.09),
GBM (.09)

DT (.74), GBM (.70),
NB (.64)

DT

FE RF (.19), KNN (.16),
NB (.11)

RF (.64), KNN (.57),
NB (.57)

RF

LM KNN (.41), RF (.33),
LR (.33)

GBM (.90), DT (.88),
NB (.88), LR (.88)

KNN

with a performance of 0.71. Regarding the AUC metric, the DT
algorithm obtained the best performance with 0.96, while the RF
and GBM algorithms obtained a performance of 0.95. The NV and
LR algorithms obtained good results for the AUC metric, all above
0.8. The best model generated by the MLP algorithm could not
predict classes with the God Class code smell due to the imbalanced
data in the dataset (2.31% according to Table 2).

Only 0.41% of classes in the dataset are affected by the Refused
Bequest code smell (Table 2), indicating the need to explore further
techniques that deal with imbalanced data. The models generated
from theDT, GBMalgorithms obtained one of the best performances
for the F1 and AUC metrics. The RF algorithm obtained one of best
performance for F1 metric (0.09) and NB (0.64) for the AUC metric.
The worst case occurred with the MLP algorithm, in which the
data imbalance did not allow the creation of a model to identify
the classes with RB smell. Consequently, the F1 and AUC metrics
values were, respectively, 0.0 and 0.5

The Feature Envy code smell affects only 0.39% of the methods
(Table 2). The low number of smelly elements makes it difficult
for the machine learning algorithms to learn about them. For this
reason, the models generated by the DT, GBM, and MLP algorithms
could not predict when a method has that code smell. In models
generated by other algorithms, the results are still low. For the F1
metric, the best performance results were the RF (0.19), KNN (0.16),
and NB (0.11) algorithms. For the AUC metric, the RF algorithm
obtained a performance of 0.64, and the KNN and NB algorithms
obtained a performance of 0.57.

The models generated by machine learning algorithms to predict
the Long Method code smell obtained low values for the F1 metric.
Still, for the AUCmetric, the majority exceeded the score of 0.8. The
KNN (0.41) algorithm obtained the highest performance for the F1
metric, followed by the RF and LR algorithms with a performance
of 0.33. The GBM, DT, NB, and LR algorithms obtained the highest
for the AUC metric, with the first at 0.9 and the others at 0.88. In
addition to that, in the case of the AUC metric, other algorithms
also obtained a good performance: RF (0.86) and KNN (0.83). Like
the other code smells, the data imbalance did not allow the MLP
algorithm to predict smelly elements.

As highlighted before, our dataset of the four code smells is im-
balanced. However, in cases such as the RB and FE code smells,
this imbalance is below the proportion of 1:100 and is considered a
severe imbalance [24]. Compared with the GC and LM code smells,

https://github.com/labsoft-ufmg/ml_predictions_replication_2024


Tuning Code Smell Prediction Models: A Replication Study ,

Figure 2: Baseline Experiment - Results

which have an imbalance above 1:100, we noticed that the perfor-
mance for the RB and FE code smells is much lower than those of
the other two smells. Another important point to highlight is that
all algorithms linearly divide the data. The inability of the MLP al-
gorithm to predict code smell indicates a possible variance problem
in the datasets. Variance defines how spread out the data are [35].
The more spread out the data are in dimensions, the more difficult it
is to draw lines that make up their divisions. This hypothesis can be
reinforced by the performance of the DT, RF, and GBM algorithms,
which can capture more complex patterns, especially in the last two
algorithms that use the ensemble technique. Given the explained
results, we summarize the answers to the first research questions.

Answer of RQ1: For classes with code smells, the algorithms
with the best performance for the F1 and AUC metrics were DT,
RF, and GBM. The exception in this case was the NB algorithm
for the RB code smell, which obtained better results than the RF
algorithm for the AUC metric. For GC smell, we chose the DT
algorithm, with 0.71 for the F1 metric and 0.96 for the AUC metric,
for experiments with feature engineering and resample techniques.
We chose the DT algorithm for the RB code smell since its scores
were 0.10 for the F1 metric and 0.74 for the AUC metric. For the FE
code smell, the algorithms with the best performance for the F1 and
AUC metrics were the RF, KNN, and NB algorithms. In this case,
the RF algorithm obtained the best performance for both metrics
(0.19 for the F1 metric and 0.64 for the AUC metric). Therefore, we
chose it for the next experiment. For the LM code smell, the best-
performing algorithms for the F1 metric were the KNN, RF, and LR.
For the AUC metric, the best-performing algorithms were GBM,
DT, and NB. For that smell, the AUC metric results were higher,
and the F1 metric results were lower, so we chose the algorithm
with the best F1 metric result, KNN (0.41).

5.2 Feature Engineering
Figure 3 shows the results of the Feature Engineering experiment.
The first chart presents the F1 metric results for the K feature selec-
tion technique variations. The second chart presents the F1 metric
results for variations of the K feature selection technique, followed
by applying the polynomial features technique. The third and fourth
charts are the same as previous charts one and two, respectively, but
for the AUC metric. Each chart presents four symbols representing
the code smells: the circle is the GC code smell, the triangle is the
RB code smell, the square is the FE code smell, and the cross is

the LM code smell. The Y-axis is the values for the F1 and AUC
metrics. The X-axis is the number of selected features. Note that on
the X-axis, for k equal to 11 and 12, the square and cross symbols
do not appear since our method dataset only has ten features.

Table 7: Feature Engineering Experiment - Variations Results

Code
Smells

F1: FS F1: FS + PF AUC: FS AUC: FS + PF

GC ↓ .34 ↑ .73 ↓ .34 ↑ .74 ↓ .61 ↑ .89 ↓ .61 ↑ .90

RB ↓ .00 ↑ .17 ↓ .50 ↑ .54 N/A N/A

FE ↓ .00 ↑ .07 ↓ .00 ↑ .08 ↓ .50 ↑ .51 ↓ .50 ↑ .52

LM ↓ .63 ↑ .64 ↓ .62 ↑ .64 ↓ .75 ↑ .76 ↓ .74 ↑ .76

Table 7 presents the best and worst results of the feature engi-
neering experiment. The first column lists the four code smells,
the second column is the F1 metric results using only the feature
selection technique, and the third column is the results using the
feature selection technique, followed by polynomial features. The
fourth and fifth columns are equivalent to the second and third
columns but for the AUC metric. Arrows pointing down indicate
the worst results, and those pointing up represent the best results.
We represented the metrics that remained unchanged in results (0.0
for the F1 metric or 0.50 for the AUCmetric) as "N/A". The complete
results are accessible in the experiment documentation.

For the God Class code smell, five features were sufficient to
stabilize performance for the F1 and AUC metrics, which reached
values of 0.73 and 0.86, respectively. The five features were FANOUT,
LCOM*, RFC, TMQ, and WMC. In the case where we selected two
features (RFC and WMC) and then further applied the polynomial
features technique, the F1 metric value was 0.69, and the AUC
metric value was 0.89, showing that in this specific case, using the
polynomial features technique allows us to get closer to the same
result of using five features.

The Feature Envy code smell achieved a significant improvement
in F1 metric results when eight features were selected (FANIN,
FANOUT, WMC, LOC, RQ, VQ, PQ, LQ, CQ), ranging from 0.0 (only
one feature) to 0.07. With the eight features above plus the use
of polynomial features, there is a slight improvement of 0.08. We
did not observe that improvement for the AUC metric: when we



, Nunes et al.

Figure 3: Feature Engineering Results

used all features, we obtained an improvement of 0.01. Although the
Feature Envy code smell results are still very low, the increase in the
number of features and the application of polynomial features had
positive impacts on the predictive capacity, indicating the need for
(i) collecting more features that can better represent the smell, and
(ii) using polynomial features to deal with the data variance problem.
Finally, using those techniques in the Refused Bequest and Long
Method code smells did not significantly impact on performance of
the results.

As evidenced by the results, varying the number of features used
to generate predictive models can be used to refine the models in
some cases. Regarding the GC and FE code smells, increasing the
dimensionality of the models was beneficial to a certain extent;
thus, the feature increase no longer has any effect from this point
onwards. As for the RB and LM code smells, increasing the number
of features did not significantly impact them, indicating that the
features used in this study may not be the best to represent these
smells; so, exploring new features to predict them can be more
interesting.

5.3 Resample Data
Figure 4 presents the results of varying the strategy parameter
for the resample data techniques. The first chart presents the F1
metric results using the oversample technique, and the second chart
the F1 metric results using the undersample technique. The third
and fourth charts present the oversample and undersample results,
respectively, for the AUC metric. Each chart presents four symbols
representing the code smells: the circle is the GC code smell, the
triangle is the RB code smell, the square is the FE code smell, and
the cross is the LM code smell. The Y-axis is the values for the F1
and AUC metrics. The X-axis is the value of the strategy parameter.

Table 8: Resample Data Experiment - Variations Results

Code
Smells

F1:
Oversample

AUC:
Oversample

F1:
Undersample

AUC:
Undersample

GC ↓ .72 ↑ .76 ↓ .89 ↑ .96 ↓ .38 ↑ .71 ↓ .86 ↑ .97

RB ↓ .00 ↑ .12 ↓ .50 ↑ .81 ↓ .00 ↑ .09 ↓ .50 ↑ .87

FE ↓ .00 ↑ .23 ↓ .50 ↑ .73 ↓ .00 ↑ .22 ↓ .50 ↑ .85

LM ↓ .76 ↑ .78 ↓ .88 ↑ .94 ↓ .42 ↑ .72 ↓ .80 ↑ .93

Table 8 presents the best and worst results of the resample data
experiment. The first column lists the four code smells, and the

second and third columns are the F1 and AUCmetrics results for the
oversample techniques, respectively. The fourth and fifth columns
are the F1 and AUC metrics results for the undersample techniques,
respectively. The values between columns two and five are con-
sidered only decimal places, with those to the right of the down
arrow being the worst results and those to the right of the up arrow
being the best results. The complete results are accessible in the
experiment documentation.

On the one hand, for the smells with the lowest imbalance (GC
- 2.31% and LM - 1.39%), for F1 score, the oversample results (GC:
0.76% and LM: 0.78%) were better than the undersample (GC:0.71%
and LM: 0.72%). On the other hand, the code smells with the greatest
imbalance (RB - 0.41% and FE - 0.39%) remained with low values
for the F1 metric, both using oversample and undersample. It is
possible to evaluate that the prediction performance regarding the
AUCmetric is good (improvement between 6% and 13% for over and
undersample cases) in the cases of the GC and LM code smells and
very good (improvement higher than 20% for over and undersample
cases) in the cases of the RB and FE code smells.

As the results show, resample techniques can be a good solu-
tion to deal with the imbalance of code smells datasets, but using
them carefully is important. For datasets with an imbalance greater
than 1:100, the undersample technique performed better than the
oversample in the case of the AUC metric and obtained a similar
result for the F1 metric for the RB and FE code smells. The oversam-
ple techniques can be a better option for code smells with lower
imbalance (GC and LM).

After the analysis of Sections 5.2 and 5.3, we can answer the
second research question.

Answer of RQ2: Using feature selection, polynomial features,
and resampling data techniques can help refine predictive models
and identify possible changes in the dataset. In the case of selecting
the number of features, we obtained improvements in cases such as
the GC and FE code smells, allowing us to evaluate that only one
feature was relevant in the prediction of the RB and LM code smells;
thus, we need to explore new features if we want to improve the RB
and LM models. Despite the positive impact for the GC and FE code
smells, using polynomial features is not justified, as it improved in
both cases by a percentage of just 0.01. Resample techniques were
more promising for refining predictive models. In cases where the
dataset imbalance exceeded 1:100, the undersample was a more
promising solution (improvement higher than 30% in AUC score);
in cases where it was below 1:100, the oversample seemed to be a
better option for F1 score and both (over and undersample) are a
good option for AUC score.



Tuning Code Smell Prediction Models: A Replication Study ,

Figure 4: Resample Data Results

6 DISCUSSION
In this section, we compare the results of this experiment with the
base study. An important aspect of both studies is the imbalance
of the Qualitas Corpus and GitHub datasets. The code smells had
the following proportions in the base study: GC: 4.77%, RB: 8.96%,
FE: 3.46%, and LM: 0.87%. In the current study, that proportion is
much lower: CG: 2.31%, RB: 0.41%, FE: 1.39%, and LM: 0.39%. We
highlight that in both studies, the code smells with less imbalance
in the datasets had the best results for prediction. In the case of
the base study, they were the GC and RB code smells; in our study,
they were the GC and LM code smells. Also, in both studies, the
models generated by the RF and GBM algorithms are among the
best predictors for most of the smells.

The main differences between the two studies are: (i) the F1 met-
ric values were higher in the base study, and (ii) the best prediction
performances in the base study were for the GC and RB code smells,
while in our study were GC and LM code smells. The first difference
is due to the imbalance in the base study dataset, which is smaller
because the dataset for the base study is from 2010 [46], while the
current study is from 2021. Older Java systems can have more code
smells, as new development practices and tools, such as Linters,
mitigate them. Regarding the second difference between the studies,
we can justify it when we conclude that the smallest imbalances
provided the best results, regardless of which smell it was.

One of the proposals for future work in the base study [10] was
to improve the results of models that did not perform well. Our
work explored feature engineering and resample data techniques
as a way to improve prediction. This improvement was significant
in some cases, especially for the AUC metric, like for the RB and
FE code smells when they used resample data techniques. In other
cases, for the F1 metric, although the techniques did not always
achieve satisfactory results, it was still possible to notice improve-
ments, where we checked for the RB and FE code smells when using
resample data techniques. In summary, resample data techniques
had a greater positive impact than feature engineering techniques.
However, undersample techniques performed better for cases with
higher imbalance, while oversample techniques were better for
cases with less data imbalance. The feature selection technique
could still provide valuable insights because, for the RB and LM
code smells, only one metric was responsible for the models’ perfor-
mance, indicating the need to seek new ways of representing this
smell. Finally, we highlight that very high values for the strategy
parameter can harm the models.

The results of this study can be useful to different professionals
in the following ways:

• Researcher: they indicate the need to research other tech-
niques, in addition to undersample and oversample, to deal
with data imbalance in code smells;

• Developer: they facilitate data-driven source code refactor-
ing;

• Software Architect: they allow improving the results of
fuzzy predictions to identify points for improvements in the
architecture of software systems.

7 THREATS TO VALIDITY
Despite the careful design of our empirical study, some limitations
may affect the validity of our results. This section discusses threats
and our actions to mitigate them, organizing them by construct,
internal, external, and conclusion validity [50].

Construct Validity. Construct validity concerns the mapping of
the results of the study to the concept or theory [50]. For instance,
we relied on only two metrics (F1 and AUC) to evaluate the models
for code smell detection. That choice threatens construct validity
since the metrics can not accurately measure the effectiveness of
the machine learning classifiers. However, that threat does not
invalidate our main findings since previous related studies use
those metrics with similar purposes. Besides, we used only one
implementation for each classifier, which may bias our results.
However, those implementations were provided by libraries heavily
used formachine learning, such as Scikit-Learn. Therefore, we relied
on the best-known algorithms to perform the code smell detections.
The construction of the ground truth is also a threat since it may
include false positives and not identify all true positives. To mitigate
it, we relied on the combination of five tools for the ground truth
creation.

Internal Validity. Threats to internal validity are influences
that can affect the independent variable due to causality [50]. In
our context, this threat refers to the characteristics of the chosen
datasets. For instance, since we selected open-source projects from
GitHub, the project domains, involved technologies, and experience
of the developers are some confounding factors. Our dataset com-
prises 30 software systems from different domains to minimize that
threat. Although the constraints of the tools used (for instance, Java-
based technology) exist, we have tried to analyze and understand
the results and mitigate confounding factors.

External Validity. Threats to external validity are conditions
that limit our ability to generalize the results of our paper [50]. For



, Nunes et al.

instance, the 30 systems we evaluated can only represent part of
the space of open-source systems since they were all written in
Java. Therefore, we cannot generalize our results to other projects,
code smells, and technologies. It is important to highlight we only
performed the detection in Java systems because not enough tools
exist to create the ground truth for other languages. The study
design is not limited to the programming language, performing in
different datasets. Besides, the selected systems range from differ-
ent domains and sizes, including large frameworks from industry.
Finally, we explored five tools in depth to detect code smells. It
would be important to assess how this might impact results.

Conclusion Validity. Threats to the conclusion validity are
concerned with issues that affect the ability to draw the correct
conclusion between the treatment and the outcome [50]. Our study
performed metrics used can have led us to false conclusions. The
main reason for choosing the F1 and AUC metrics is to prioritize
something other than precision or recall. Moreover, they are well-
known metrics from machine learning evaluation and information
retrieval. Finally, since not all information was clear enough to
answer the research questions, cross-discussions among the paper
authors often occurred to reach a common agreement about our
main findings.

8 RELATEDWORK
Identifying code smellsmanually in the projects is a time-consuming
activity; as a consequence, several detection strategies were pro-
posed in the literature [14], and they use different strategies, such
as metric thresholds [38, 49], refactoring opportunities [15], and
machine learning algorithms [2, 12, 13, 16, 29–31, 41]. Maiga et
al. [31] used the Support Vector Machine model to identify four
antipatterns in three Java projects. Later, Amorim et al. [2] investi-
gated the precision of Decision Trees to detect four code smells in
four Java projects. Differently from these works, we investigated
the performance of seven models for four smells in 30 systems.
Fontana et al. [16] used machine learning to identify four code
smells on 74 Java systems. In total, they evaluated the performance
of 6 algorithms, varying some of its parameters. However, Di Nucci
et al. [13] replicated the study, filling some gaps, such as using
techniques dealing with data imbalance. Even though our dataset
comprises fewer systems, we highlight that the selected systems in
our work reflect current practices on open-source development and
new technologies. In contrast, previous works analyze the perfor-
mance of systems collected in 2012 [13, 16]. We also experimented
with different techniques that deal with imbalanced data and tuning
of hyperparameters, and we have used different polynomial fea-
tures. We also present our results with an additional measurement,
the AUC metric.

More recently, Stefano et al. [12] evaluated if there was an impact
on the model performance when analyzing multiple versions of a
system versus using only one version. They did not find a statisti-
cally significant difference between their results. Lomio et al. [29]
evaluated how rules from the SonarQube system can help improve
fault prediction algorithms’ performance. Santos et al. [41] used an
ensemble model to identify how similar the models for defects are
in comparison with seven code smells at the class level on a defect
dataset with different versions of 14 systems. They have found a

high performance for only three smells. Even though the focus of
both works differs, we highlight our work to complement them
since we also evaluate two smells at the method level. Madeyski
et al. [30] evaluated the performance of seven algorithms to de-
tect four code smells (Blob, Data Class, Long Method, and Feature
Envy). The authors used a manually validated sample of classes
from their industrial partners. Here, we bring the perspective of
the performance of models on open-source development, and we
evaluate two other code smells, the God Class and Refused Bequest
code smells.

9 CONCLUSION AND FUTURE STUDIES
This study presents a differentiated replication of a base study
[10]. We noticed that the more severe the imbalance in the dataset,
the worse the model prediction performance. The undersample
technique performed better for datasets withmore severe imbalance,
while both (over and undersample) performed good for datasets
with less severe imbalance. The feature selection technique provided
insights into collecting more information to represent the RB and
LM code smells. The polynomial feature techniques had little impact
on the performance of the predictions.

In future work, we intend to research newmachine learning tech-
niques that deal with data imbalance, in addition to undersample
and oversample. We also want to explore new ways of representing
code smells and the features presented in this study and expand
the dataset, evaluating other systems. Finally, extending the work
to other code smells and languages besides Java is also necessary.

10 ACKNOWLEDGEMENTS
This research was partially supported by Brazilian funding agencies:
CNPq, CAPES, and FAPEMIG (Grant PPM-00651-17).

REFERENCES
[1] Khalid Alkharabsheh, Sadi Alawadi, Victor R Kebande, Yania Crespo, Manuel

Fernández-Delgado, and José A Taboada. 2022. A comparison of machine learning
algorithms on design smell detection using balanced and imbalanced dataset: A
study of God class. Information and Software Technology 143 (2022), 106736.

[2] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro. 2015. Experience
report: Evaluating the effectiveness of decision trees for detecting code smells.
In International Symposium on Software Reliability Engineering (ISSRE). 261–269.

[3] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

[4] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[5] L. Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[6] L. Breiman. 2017. Classification and regression trees. Routledge.
[7] Aloisio Cairo, Glauco Carneiro, Antonio Resende, and Fernando Brito E Abreu.

2019. The Influence of God Class and Long Method in the Occurrence of Bugs in
Two Open Source Software Projects: An Exploratory Study (S). In International
Conferences on Software Engineering and Knowledge Engineering. KSI Research
Inc. and Knowledge Systems Institute Graduate School. https://doi.org/10.18293/
seke2019-084

[8] T. Chen and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In Int’l
Conf. on knowledge discovery and data mining (KDD). ACM, 785–794.

[9] T. M. Cover, P. E. Hart, et al. 1967. Nearest neighbor pattern classification.
Transactions on Information Theory 13, 1 (1967), 21–27.

[10] Daniel Cruz, Amanda Santana, and Eduardo Figueiredo. 2020. Detecting bad
smells with machine learning algorithms: an empirical study. In Proceedings of
the 3rd International Conference on Technical Debt. 31–40.

[11] Phongphan Danphitsanuphan and Thanitta Suwantada. 2012. Code Smell De-
tecting Tool and Code Smell-Structure Bug Relationship. In 2012 Spring Congress
on Engineering and Technology. IEEE. https://doi.org/10.1109/scet.2012.6342082

[12] Manuel De Stefano, Fabiano Pecorelli, Fabio Palomba, and Andrea De Lucia.
2021. Comparing Within- and Cross-Project Machine Learning Algorithms

https://doi.org/10.18293/seke2019-084
https://doi.org/10.18293/seke2019-084
https://doi.org/10.1109/scet.2012.6342082


Tuning Code Smell Prediction Models: A Replication Study ,

for Code Smell Detection. In Proceedings of the 5th International Workshop on
Machine Learning Techniques for Software Quality Evolution (Athens, Greece)
(MaLTESQuE 2021). Association for Computing Machinery, New York, NY, USA,
1–6. https://doi.org/10.1145/3472674.3473978

[13] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and
Andrea De Lucia. 2018. Detecting code smells using machine learning techniques:
are we there yet?. In 2018 ieee 25th international conference on software analysis,
evolution and reengineering (saner). IEEE, 612–621.

[14] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. 2016. A Review-
Based Comparative Study of Bad Smell Detection Tools. In Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering
(EASE ’16). Article 18, 12 pages.

[15] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2011. Jdeodorant: identification and application of extract class refactorings. In
2011 33rd International Conference on Software Engineering (ICSE). IEEE, 1037–
1039.

[16] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. 2016. Comparing and
experimenting machine learning techniques for code smell detection. In Empirical
Software Engineering (EMSE).

[17] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[18] Jiri Gesi, Xinyun Shen, Yunfan Geng, Qihong Chen, and Iftekhar Ahmed. 2023.
Leveraging Feature Bias for Scalable Misprediction Explanation of Machine
Learning Models. In Proceedings of the 45th International Conference on Software
Engineering (ICSE).

[19] Mitja Gradisnik, Tina Beranic, Saso Karakatic, and Goran Mausas. 2019. Adapting
God Class thresholds for software defect prediction: A case study. In 2019 42nd In-
ternational Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE. https://doi.org/10.23919/mipro.2019.8757009

[20] K. Hornik, M. Stinchcombe, and H.White. 1989. Multilayer feedforward networks
are universal approximators. Neural networks 2, 5 (1989), 359–366.

[21] Marcel Jerzyk and Lech Madeyski. 2023. Code Smells: A Comprehensive Online
Catalog and Taxonomy. In Studies in Systems, Decision and Control. Springer
Nature Switzerland, 543–576. https://doi.org/10.1007/978-3-031-25695-0_24

[22] Nasraldeen Alnor Adam Khleel and Károly Nehéz. 2023. Detection of code
smells usingmachine learning techniques combinedwith data-balancingmethods.
International Journal of Advances in Intelligent Informatics 9, 3 (2023), 402–417.

[23] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, andM. Klein. 2002. Logistic regression.
Springer.

[24] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence 5, 4 (2016), 221–232.

[25] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610.

[26] David Lane, David Scott, Mikki Hebl, Rudy Guerra, Dan Osherson, and Heidi
Zimmer. 2003. Introduction to statistics. Citeseer.

[27] M. Lanza, R. Marinescu, and S. Ducasse. 2005. Object-Oriented Metrics in Practice.
Springer-Verlag.

[28] D. D. Lewis. 1998. Naive (Bayes) at forty: The independence assumption in infor-
mation retrieval. In European conference on machine learning (ECML). Springer,
4–15.

[29] Francesco Lomio, Sergio Moreschini, and Valentina Lenarduzzi. 2022. A Ma-
chine and Deep Learning analysis among SonarQube rules, Product, and Pro-
cess Metrics for Faults Prediction. Empirical Software Engineering 27 (10 2022).
https://doi.org/10.1007/s10664-022-10164-z

[30] Lech Madeyski and Tomasz Lewowski. 2023. Detecting code smells using
industry-relevant data. Information and Software Technology 155 (2023), 107112.
https://doi.org/10.1016/j.infsof.2022.107112

[31] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y. Guéhéneuc, G. Antoniol, and E.
Aïmeur. 2012. Support vector machines for anti-pattern detection. In Proceedings
of Int’l Conf. on Automated Software Engineering (ASE). 278–281.

[32] RaduMarinescu. 2005. Measurement and quality in object-oriented design. In 21st
IEEE International Conference on Software Maintenance (ICSM’05). IEEE, 701–704.

[33] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[34] Naouel Moha and Yann-Gael Guéhéneuc. 2007. Decor: a tool for the detection
of design defects. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. 527–528.

[35] Glenn J Myatt. 2007. Making sense of data: a practical guide to exploratory data
analysis and data mining. John Wiley & Sons.

[36] Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Alessandro Garcia,
Anne Benedicte Agbachi, Roberto Oliveira, and Carlos Lucena. 2018. On the
identification of design problems in stinky code: experiences and tool support.
Journal of the Brazilian Computer Society 24, 1 (2018), 1–30.

[37] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg. 2010. Are all code smells harmful?
A study of God Classes and Brain Classes in the evolution of three open source
systems. In 2010 IEEE International Conference on Software Maintenance. 1–10.

[38] Thanis Paiva1 , Amanda Damasceno1 , Juliana Padilha1 , Eduardo Figueiredo1 , and
Claudio Sant’Anna. 2015. Experimental evaluation of code smell detection tools.
(2015).

[39] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code using
change history information. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 268–278.

[40] Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea De Lucia. 2019.
On the role of data balancing for machine learning-based code smell detection. In
Proceedings of the 3rd ACM SIGSOFT international workshop on machine learning
techniques for software quality evaluation. 19–24.

[41] Geanderson Santos, Amanda Santana, Gustavo Vale, and Eduardo Figueiredo.
2023. Yet Another Model! A Study on Model’s Similarities for Defect and Code
Smells. In Fundamental Approaches to Software Engineering, Leen Lambers and
Sebastián Uchitel (Eds.). Springer Nature Switzerland, Cham, 282–305.

[42] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. Designite: A software
design quality assessment tool. In Proceedings of the 1st International Workshop
on Bringing Architectural Design Thinking into Developers’ Daily Activities. 1–4.

[43] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158–173.

[44] Satwinder Singh and K. S. Kahlon. 2012. Effectiveness of refactoring metrics
model to identify smelly and error prone classes in open source software. ACM
SIGSOFT Software Engineering Notes 37, 2 (apr 2012), 1–11. https://doi.org/10.
1145/2108144.2108157

[45] E. Sobrinho, A. De Lucia, and M. Maia. 2021. A systematic literature review
on bad smells–5 w’s: which, when, what, who, where. IEEE Trans. on Software
Engineering 47, 1 (2021), 17–66.

[46] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The qualitas corpus: A curated collec-
tion of java code for empirical studies. In 2010 Asia pacific software engineering
conference. IEEE, 336–345.

[47] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S
Bigonha. 2013. Qualitas. class Corpus: A compiled version of the Qualitas Corpus.
ACM SIGSOFT Software Engineering Notes 38, 5 (2013), 1–4.

[48] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. 2015. JSpIRIT: a flexible tool for the analysis of
code smells. In 2015 34th International Conference of the Chilean Computer Science
Society (SCCC). IEEE, 1–6.

[49] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. 2015. JSpIRIT: a flexible tool for the analysis of
code smells. In 2015 34th International Conference of the Chilean Computer Science
Society (SCCC). IEEE, 1–6.

[50] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[51] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the impact of design debt on software quality. In Proceedings of
the 2nd Workshop on Managing Technical Debt. ACM. https://doi.org/10.1145/
1985362.1985366

[52] Nico Zazworka, Antonio Vetro’, Clemente Izurieta, Sunny Wong, Yuanfang Cai,
Carolyn Seaman, and Forrest Shull. 2013. Comparing four approaches for tech-
nical debt identification. Software Quality Journal 22, 3 (apr 2013), 403–426.
https://doi.org/10.1007/s11219-013-9200-8

https://doi.org/10.1145/3472674.3473978
https://doi.org/10.23919/mipro.2019.8757009
https://doi.org/10.1007/978-3-031-25695-0_24
https://doi.org/10.1007/s10664-022-10164-z
https://doi.org/10.1016/j.infsof.2022.107112
https://doi.org/10.1145/2108144.2108157
https://doi.org/10.1145/2108144.2108157
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1007/s11219-013-9200-8

	Abstract
	1 Introduction
	2 Background
	2.1 Code Smells
	2.2 Machine Learning

	3 Study Replication
	4 Study Design
	4.1 Research Questions
	4.2 GitHub Dataset
	4.3 Model Features
	4.4 Ground Truth Creation
	4.5 Machine Learning Study Design

	5 Results
	5.1 Baseline Model Experiment
	5.2 Feature Engineering
	5.3 Resample Data

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Studies
	10 Acknowledgements
	References

