
Springer Nature 2021 LATEX template

Evaluating testing strategies for resource
related failures in mobile applications

Euler Horta Marinho1,2*, Fischer Ferreira1, João P. Diniz1
and Eduardo Figueiredo1*

1*Computer Science Department, Federal University of Minas
Gerais, Brazil.

2Computer and Systems Department, Federal University of Ouro
Preto, Brazil.

*Corresponding author(s). E-mail(s): eulerhm@dcc.ufmg.br;
figueiredo@dcc.ufmg.br;

Contributing authors: fischerjf@dcc.ufmg.br; jpaulo@dcc.ufmg.br;

Abstract
Mobile applications have been used for multiple purposes from enter-
tainment to critical domains. As a consequence, the quality of mobile
applications has become a crucial aspect, for instance, by promoting the
use of testing as a quality assurance practice. The diversity of mobile
platforms is pervaded by several resources related to communication
capabilities, sensors, and user-controlled options. As a result, applications
can present unexpected behaviors and resource interactions can intro-
duce failures that manifest themselves in specific resource combinations.
These failures can compromise the mobile application quality and harm
the user experience. We evaluate the failure-detection capability and
effectiveness of five sampling testing strategies (Random, One-Enabled,
One-Disabled, Most-Enabled-Disabled, and Pairwise) in the context
of resource related failures in 15 mobile applications. We focus on 14
common resources of the Android platform and analyze the resource
interactions more likely to cause failures. Random had great percentages
of failing test cases, followed by One-Enabled, Most-Enabled-Disabled,
and Pairwise. We observe that One-Enabled and One-Disabled are the
most effective testing strategies for six and four applications, respec-
tively. Surprisingly, resource pairs have more influence on failures than
other resource combinations, varying widely among the applications.

1

Springer Nature 2021 LATEX template

2 Evaluating testing strategies for resource related failures in mobile applications

Keywords: Mobile applications, Software testing, Sampling strategies,
Resource interactions

1 Introduction
Mobile applications have been used for multiple purposes including entertain-
ment, management of personal information, and control of devices, such as
home security systems, health monitors, and cars (Amalfitano et al., 2017).
Therefore, applications have been developed not only for entertainment pur-
poses but also for targeting safety and critical domains. As a consequence,
the quality of mobile applications has become a crucial aspect, for instance,
by promoting the use of testing as a quality assurance practice (Júnior et al.,
2022). The growing awareness of mobile applications quality has resulted in
a broad spectrum of testing techniques (Júnior et al., 2022; Luo et al., 2020;
Tramontana et al., 2019; Kong et al., 2018). However, despite the availabil-
ity of testing methods, techniques, and tools, the field of mobile application
testing is still under development (Escobar-Velásquez et al., 2020).

Mobile applications are often executed on a variety of platform configura-
tions (Galindo et al., 2016) and each platform configuration has different plat-
form resources. These resources may be related to communication capabilities
(e.g., Wi-Fi, Bluetooth, Mobile Data, and GPS), sensors (e.g., Accelerome-
ter, Gyroscope, and Magnetometer), and user-controlled options (e.g., Battery
Saver and Do Not Disturb). Some resources can be directly managed by means
of system-level settings, for example, the Android Quick Settings1, allowing
users to customize many system or application behaviors (Lu et al., 2019).
However, applications can present unexpected behaviors because the resource
interactions can introduce failures that manifest themselves in specific resource
combinations (Marinho et al., 2021).

Resource interaction failures have been explored in mobile applications test-
ing (Marinho et al., 2021; Sun et al., 2021; Lu et al., 2019). These failures occur
when resources influence the behavior of other resources, similarly to the fea-
ture interaction problem in configurable software systems (Apel, Kolesnikov, et
al., 2013) and telecommunication systems (Bowen et al., 1989). An example of
resource interaction failure occurs for Commons App when a pair of resources
are disabled (Sun et al., 2021). However, the investigation of these failures is a
still little explored aspect of research. We lack work to evaluate resource inter-
action failures in real mobile applications and verify which resources are most
related to failures. Testers may neglect to properly test mobile applications
considering the interaction of resources due to a lack of knowledge of such fail-
ures. Therefore, resource interaction failures may occur in the everyday use of
the mobile application but may be imperceptible in the testing phase.

1support.google.com/android/answer/9083864?hl=en

support.google.com/android/answer/9083864?hl=en

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 3

The high number of input combinations is a challenging aspect for test-
ing software systems in general, since the effort of the exhaustive testing is
generally prohibitive. Particularly, it is also the case of configurable systems
(Apel, Batory, et al., 2013) (Ferreira et al., 2021; Cohen et al., 2007) in which
all tests must be executed in several configurations. In this work, we named
a input combination as a setting, i.e. a set of resources whose states (enabled
or disabled) are previously defined. The set we investigate in this study
contains 14 common resources: Auto Rotate, Battery Saver, Bluetooth,
Camera, Do Not Disturb, Location, Mobile Data, Wi-Fi, Accelerometer,
Gyroscope, Light, Magnetometer, Orientation, and Proximity. The total
of settings (214) makes unfeasible the use of brute force testing approaches in
real development environments.

An alternative for decreasing the testing effort is the use of sampling
strategies involving the selection of a subset of input combinations. Sampling
strategies are a well known technique, such as in the domain of configurable
systems (Apel, Batory, et al., 2013). Several sampling strategies have been pro-
posed and investigated in the literature, such as t-wise (Ferreira et al., 2021),
one-disabled (Abal et al., 2014), and most-enabled-disabled (Medeiros et al.,
2016). They have been shown to be effective in finding faults, even with the
number of combinations tested much lower than the universe of all possible
combinations (Souto et al., 2017; Medeiros et al., 2016)

In this work, we evaluate five sampling strategies in the context of resource
related failures of mobile applications. Since we are not aware of specific sam-
pling testing strategies for mobile applications domain, we choose strategies
commonly used for configurable systems. To achieve our goal in this study, we
follow five steps. First, we select applications from Github repositories. Second,
we define the target resources and generate settings for the selected sampling
testing strategies: Random, One-Enabled, One-Disabled, Most-Enabled-Disabled,
and Pairwise. Third, we extend test suites with an instrumentation code aim-
ing to control (enabling or disabling) the resources. Fourth, we execute the
test suites for each setting. Finally, we analyse the generated test reports
to compare the effectiveness and failure-detection capability of the sampling
strategies. Moreover, we identify the resource interactions that most commonly
cause failures using a frequent itemset mining analysis.

Our results indicate that Random had great percentages of failing test cases,
followed by One-Enabled, Most-Enabled-Disabled, and Pairwise. Concerning the
effectiveness, we found that One-Enabled and One-Disabled were the most
effective strategies for six and four applications, respectively. Concerning the
resource interactions more likely to cause failures, we found that some resource
pairs have more influence on failures. For instance, most of the applications
have failures related to pairs of disabled resources.

Overall, we delivery the following main contributions:

• We provide evidence of which testing strategies are more effective on finding
resource interaction failures in real mobile applications.

• We exhibit the resources interactions more likely to cause failures.

Springer Nature 2021 LATEX template

4 Evaluating testing strategies for resource related failures in mobile applications

• We make our data publicly available for further investigations on a GitHub
repository 2.

The remainder of this paper is organized as follows. Section 2 presents
background information on resource interaction failures and sampling testing
strategies. Section 3 describes the study design. Section 4 discusses the results
of our empirical study. Section 5 describes the threats to validity of this work.
Section 6 presents some related work. Finally, Section 7 concludes this study
and shows directions for future work.

2 Background
Some definitions are important for the understanding of our work. Therefore,
this section presents an overview of resource interaction failures (Section 2.1)
and the sampling testing strategies evaluated in this study (Section 2.2).

2.1 Resource Interaction Failures
We use “resource interaction failures” as failures that occur when resources
influence the behavior of other resources. This definition is inspired by the
feature interaction problem in configurable systems (Apel, Batory, et al., 2013).

Figure 1 presents a code excerpt of Wikimedia Commons Android app,
showing a case of a resource interaction failure (Sun et al., 2021). The Android
Platform supports the positioning via GPS or network 3. An issue describes
the situation involving the crash of the application when it is opened and both,
GPS and network, are disabled 4. The failure is caused by the call of getLast-
KnownLocation to get the current location via network (line 3). However, this
call returns a null value which is later used in the construction of an object to
store the location-related values (line 5). As a result, the application crashes
because of a NullPointerException.

1 Locat ion lastKL = locat ionManager . getLastKnownLocation (
↪→ LocationManager .GPS_PROVIDER) ;

2 i f (lastKL == null) {
3 lastKL = locat ionManager . getLastKnownLocation (

↪→ LocationManager .NETWORK_PROVIDER) ;
4 }
5 return LatLng . from (lastKL) ; //An o b j e c t i s cons t ruc t ed

↪→ from the l a t i t u d e and l on g i t u d e coord ina t e s

Fig. 1: Code Excerpt from the Wikimedia Commons Android app.

2https://eulerhm.github.io/samplingapptest/
3In this work, GPS and network are related to Location, and Wi-Fi/Mobile Data
4https://github.com/commons-app/apps-android-commons/issues/1735

https://eulerhm.github.io/samplingapptest/
https://github.com/commons-app/apps-android-commons/issues/1735

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 5

Another example of resource interaction failure happens in Traccar
Client 5, which is an open source application available for download at Google
Play Store. In summary, this application is a GPS tracker, which communi-
cates with its own application server. Traccar Client has an internal setting
called Accuracy 6, which can be set to three values: High, Medium, or Low.
To achieve the Accuracy High, it requires that the GPS, Wi-Fi, Mobile data,
and Bluetooth are enabled on the smartphone.

According the the issue #390, opened at the Traccar issue tracker at
GitHub 7, the application stops changing location when its Accuracy is set to
Medium even if the four resources are enabled. However, it works again for the
other two possible values, i.e., High and Low. It is worth to mention that the
referred issue was registered in 2019 and remains “Open” in 2022.

2.2 Sampling Testing Strategies
Sampling testing strategies are commonly used to test configurable software
systems (Ferreira et al., 2021; Souto et al., 2017; Medeiros et al., 2016; Abal
et al., 2014). Testing configurable systems encompasses the exploration of a
configuration space, i.e., the combination of all input options that can be used
to configure a system (Souto et al., 2017). As the exhaustive exploration of this
space is often very expensive or even impractical (for instance, by brute-force),
an alternative to balance the effort and the failure-detection capability is to
use sampling testing strategies. The effort can be measured considering the
size of the sample set (related to the test execution time), whereas the failure-
detection capability can be associated to the number of failures detected by
the sampled configurations (Medeiros et al., 2016).

In this work, we used 14 Android resources, resulting in a total of 16, 384
(214) settings to be tested. Using Vocable as an example, we would spend a test
execution time of about 1,292 hours (about 54 days) to fully test this applica-
tion. This time constraint makes the exhaustive testing unfeasible in practice.
In addition to time, we have other challenges to deal with, such as memory
consumption and traceability of failed settings, which makes exhaustive testing
in a real development environment unfeasible.

The use of sampling testing has been promising (Ferreira et al., 2021).
Even with a small number of settings, it is possible to find feature interaction
failures using sampling testing strategies (Ferreira et al., 2021; Souto et al.,
2017; Medeiros et al., 2016; Abal et al., 2014). Below, we describe five of the
most common sampling testing strategies that we selected to apply in this
study. In addition, for a hypothetical system with three resources, named R1,
R2, R3, and no constraints among them, Table 1 shows examples of settings
generated by each of the selected strategy. In this table, when an exclamation
mark precedes the resource name, it indicates that the resource is disabled.

5https://www.traccar.org
6In this work, we do not deal with internal settings of applications (https://developer.android

.com/guide/topics/ui/settings)
7https://github.com/traccar/traccar-client-android/issues/390

https://www.traccar.org
https://developer.android.com/guide/topics/ui/settings
https://developer.android.com/guide/topics/ui/settings
https://github.com/traccar/traccar-client-android/issues/390

Springer Nature 2021 LATEX template

6 Evaluating testing strategies for resource related failures in mobile applications

The strategy One-Disabled (Abal et al., 2014) selects settings with only one
resource disabled and all other resources enabled. The strategy One-Enabled
selects settings with only one resource enabled and the other resources disabled.
The strategy Most-Enabled-Disabled combines two sets of samples: one set in
which most of the resources are enabled and other set in which most of the
resources are disabled. In the case when constraints between resources do not
exist, it establishes two settings: one with all resources enabled and one with
all resources disabled (Medeiros et al., 2016). The strategy Random creates n
distinct settings with all resources randomly enabled or disabled. We used the
implementation of this strategy present in FeatureIDE (Thüm et al., 2014).

In a t-wise combinatorial interaction testing (CIT), each combination of t
resources is required to appear in at least one setting of the sample, i.e., only
the subset of settings that covers a valid group of t resources being enabled
and disabled actually matters (Nie & Leung, 2011). Generating such config-
urations can be modeled as a covering array problem instance. However, this
optimization is NP-hard and several heuristics have been proposed to perform
t-wise sampling (Al-Hajjaji et al., 2016). In this paper, we used the Pairwise
strategy, where t=2. Specifically, the algorithm available in FeatureIDE.

Table 1: Examples of settings covering the resources R1, R2, R3 for each
strategy

Strategy Settings

One-Disabled {!R1, R2, R3}, {R1, !R2, R3}, {R1, R2, !R3}

One-Enabled {R1, !R2, !R3}, {!R1, R2, !R3}, {!R1, !R2, R3}

Most-Enabled-Disabled {R1, R2, R3}, {!R1, !R2, !R3}

Random {!R1, !R2, R3}, {!R1, R2, R3}, {R1, !R2, !R3},
{R1, R2, !R3}, {R1, R2, R3}

Pairwise {R1, R2, !R3}, {R1, !R2, R3}, {!R1, R2, R3}, {!R1, !R2, !R3}

3 Study Design
This section shows the experimental design of our study. Section 3.1 presents
the research questions and Section 3.2 details each phase of the study.

3.1 Research Questions
We propose the following research questions:

RQ1: What is the number of failures detected by each sampling testing
strategy?

RQ2: Which sampling testing strategies are the most effective on finding
failures in mobile applications?

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 7

4. Test

execution
2. Setting

definition

3. Application

test extension

1. Application

selection

Define search

criteria

Clone

repositories

(1123)

Calculate test

code metrics

(625)

Filter

applications

(20)

Selected
applications

Insert setup

conditions

Extend test

suites

Define target

resources

Define sampling

testing strategies

Settings

Test reports

5. Test report

analysis

Applications with

extended tests

Execute test

suite

Select setting

Generate

settings

Extract data

Frequent

itemset mining

Fig. 2: The phases of the study.

RQ3: Which resource interactions are more likely to cause failures?
The first research question can be answered directly by measuring the

number of failing test cases. We assume that each failing test case corre-
sponds to a unique failure despite the used test oracle (Barr et al., 2015).
For the second research question, we calculate the effectiveness according to
Equation 1. FailingSettings is the amount of settings that cause at least
one failure. TotalSettings represents the total of settings generated by the
sampling testing strategy.

Effectiveness =
FailingSettings

TotalSettings
(1)

For the third research question, we apply the frequent item set mining
analysis aiming to identify the group of resources more likely to cause failures.

3.2 Study Phases
Figure 2 shows an overview of the phases of the study. First, we select the
applications (Phase 1) and define the settings according to the sampling test-
ing strategies (Phase 2). We extend the test suites to enable or disable the
resources (Phase 3). We then execute the extended test suites (Phase 4) for
each setting indicated by the testing strategy. Finally, we perform the analysis
of the recorded test reports (Phase 5). In the following sections, we detail each
phase.

Springer Nature 2021 LATEX template

8 Evaluating testing strategies for resource related failures in mobile applications

Table 2: Resource related tags

Resource Tag Value

Bluetooth uses-feature android.hardware.bluetooth
Bluetooth uses-permission bluetooth
Location uses-permission access_fine_location
Location uses-feature android.hardware.location
Wi-Fi, Mobile data uses-permission internet
Camera uses-feature android.hardware.camera
Others uses-feature android.hardware.sensor.*

3.3 Application Selection
We searched for Android applications from public GitHub repositories. We
defined as the search criteria repositories with at least 100 stars, with Java or
Kotlin programming languages, and with the last commit on or after January
1, 2017. Java and Kotlin are the main languages for developing Android appli-
cations (Mateus & Martinez, 2019). The number of stars is a metric related to
the popularity of the repository (Coelho et al., 2020) often used by researchers
to select GitHub projects for empirical studies in software engineering (Borges
& Valente, 2018). The data of the last commit was used to avoid unmaintained
applications. The number of repositories and applications is inside the steps
of the Phase 1. We conducted an initial search in order to validated the cho-
sen thresholds. Initially, we selected a small set with 30 repositories and we
perceived that in this set there were projects of interest for our study.

We cloned the initial 1,000 repositories. However, one of these repositories
contains a curated list of Kotlin applications, resulting in 123 additional repos-
itories. From the initial set, we get 625 projects with Android instrumented
tests. For these projects, we used the cloc tool8 to calculate the test code
size. In order to manage the complexity of test executions and to not deal
with very simple test suites, we constrained the projects with test code size
between 400 and 4,000 LOC. This initial filtering resulted in 83 applications.
We applied a last filtering to find applications with at least one of the tags
described in Table 2. These tags are declared in the Manifest file and indicate
some resources used by the application. A uses-permission tag 9 is used to
request permission of the user aiming its correct operation. A uses-feature
tag 10 is used by online stores to filter the application from devices that do
not meet the hardware requirements. Hence, developers are able to control the
devices in which the application may be installed. We highlight that the appli-
cations can use other resources besides those presented, since other resources
could be identified from the static analysis of the application code.

Finally, the last application set contains 74 applications. From this set,
we randomly selected 20 applications that did not present building or test

8https://github.com/AlDanial/cloc
9https://developer.android.com/guide/topics/manifest/uses-permission-element
10https://developer.android.com/guide/topics/manifest/uses-feature-element

https://github.com/AlDanial/cloc
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-feature-element

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 9

execution issues. Table 3 presents an overview of the applications used in our
study. We selected applications from different categories named according to
the Play Store categories11, with a large variation of size and test code size.
For instance, applications vary from 455 lines of code (MoonShot) to more
than 347,000 lines of code (WordPress-Android). Similarly, test code size vary
between 464 LOC (MoonShot) and 3,732 LOC (Mixin-Messenger). Moreover,
the number of test cases vary from 4 (Ground) to 164 (AnkiDroid). The number
of commits, a possible metric associated to the level of maintenance activity
of the repository (Coelho et al., 2020), vary between 21 (Threema) to 68,148
(WordPress-Android).

3.4 Setting Definition
For defining the settings, we established the target resources. For the selection
of resources, we were oriented by two factors. First, we had to select resources
often used by Android applications, such as Wi-Fi, Mobile Data, and Location
and present in most of the devices. For example, the step counter motion sen-
sor and some ambient sensors, e.g., humidity and pressure are not so common.
Second, we deal with resources that can be controlled by our instrumenta-
tion. Therefore, our work includes the 14 resources described in Table 4. Some
resources are directly manageable by mobile device users (for instance, Location
and Mobile Data) whereas others are restricted only to more advanced users
(for example, sensors, such as Accelerometer and Gyroscope), as we describe in
Section 3.5. Among the target resources, three are used to manage networks
and connections (Bluetooth, Mobile Data, and Wi-Fi), six to control sensors
(Accelerometer, Gyroscope, Light, Magnetometer, Orientation, and Proximity),
one to control a device’s hardware element (Camera), one to control a privacy
option (Location), and three to manage user-controlled options (Auto Rotate,
Battery Saver, and Do Not Disturb).

We can note that some target resources are not present in the column
“Resources” of Table 3. This column presents resources declared in the Manifest
file that we used for the application selection. Some resources are not declared
since they are not directly used by the application (for instance, Auto Rotate
and Battery Saver). Other resources do not demand a uses-permission tag
and may not be explicitly required by the developer with a uses-feature tag
(for instance, Accelerometer and Gyroscope). In this case, other approaches
for code analysis could be used for identifying additional resources.

We define setting as a 14-tuple of pairs (resource, state) where state
can be True or False depending on whether the resource is enabled or dis-
abled. Figure 3 presents an example of a setting where an exclamation mark
preceding the resource name indicates it is disabled. For instance, only Wi-Fi
and Location are disabled in this setting.

We use five sampling test strategies: Random, One-Disabled, One-Enabled,
Most-Enabled-Disabled, and Pairwise. The number of settings generated by Ran-
dom was limited to 30 due to the experimental time constraints. One-Disabled

11https://support.google.com/googleplay/android-developer/answer/9859673?hl=en

https://support.google.com/googleplay/android-developer/answer/9859673?hl=en

Springer Nature 2021 LATEX template

10 Evaluating testing strategies for resource related failures in mobile applications

Table 3: Characteristics of the selected applications

Application Category LOC Test
LOC

Test
cases

Resources Commits Exec
Time

AnkiDroidi Education 158,607 2,770 164 Camera,
Mobile Data,
Wi-Fi

13,643 1h21m39s

CovidNowii Medical 2,269 540 21 Mobile Data,
Wi-Fi

85 12m11s

Groundiii Productivity 19,906 525 4 Camera,
Location,
Mobile Data,
Wi-Fi

4,936 4m31s

Ioschediv Books,
Reference

27,824 473 9 Location,
Mobile Data,
Wi-Fi

3,101 7m4s

Lockwisev Productivity 14,535 1,184 38 Mobile Data,
Wi-Fi

503 19m13s

Mixin-
Messengervi

Finance 168,080 3,732 160 Bluetooth,
Camera,
Location,
Mobile Data,
Wi-Fi

8,086 1h31m1s

Moonshotvii Tools 455 464 28 Mobile Data,
Wi-Fi

351 11m40s

Nekomeviii Productivity 1,084 2,097 64 Mobile Data,
Wi-Fi

2,742 38m50s

Nl-
covid19ix

Medical 65,839 1,114 20 Bluetooth,
Mobile Data,
Wi-Fi

1,293 14m34s

OpenScalex Health,
Fitness

27,781 1,451 14 Bluetooth,
Location

2,027 8m36s

OwnTracksxi Travel, Local 14,499 889 27 Location,
Mobile Data,
Wi-Fi

1,995 25m36s

PocketHubxii Productivity 29,001 1,663 107 Mobile Data,
Wi-Fi

3,512 43m50s

Radio-
Droidxiii

Music,
Audio

22,815 1,735 23 Bluetooth,
Mobile Data,
Wi-Fi

1,186 30m10s

Scarlet-
Notesxiv

Productivity 4,260 770 52 Mobile Data,
Wi-Fi

656 10m38s

Showly-
2.0xv

Entertainment 2,547 952 55 Mobile Data,
Wi-Fi

3,251 25m39s

SpaceX-
Followerxvi

News,
Magazines

7,664 940 30 Mobile Data,
Wi-Fi

356 15m45s

Threemaxvii Communication 238,045 1,931 54 Bluetooth,
Camera,
Location,
Mobile Data,
Wi-Fi

21 27m49s

Vocablexvii Communication 13,188 499 14 Camera 863 4m44s
Woo-
Commercexix

Business 156,962 1,367 27 Mobile Data,
Wi-Fi

26,527 13m58s

WordPress-
Androidxx

Productivity 347,897 3,674 115 Camera,
Mobile Data,
Wi-Fi

68,148 1h6m5s

i github.com/ankidroid/Anki-Android
ii github.com/OMIsie11/CovidNow
iii github.com/google/ground-android
iv github.com/google/iosched
v github.com/mozilla-lockwise/lockwise
-android

vi github.com/MixinNetwork/android-app
vii github.com/haroldadmin/MoonShot
viii github.com/Chesire/Nekome
ix github.com/minvws/nl-covid19-notification
-app-android

x github.com/oliexdev/openScale

xi github.com/owntracks/android
xii github.com/pockethub/PocketHub
xiii github.com/segler-alex/RadioDroid
xiv github.com/BijoySingh/Scarlet-Notes
xv github.com/michaldrabik/showly-2.0
xvi github.com/OMIsie11/SpaceXFollower
xvii github.com/threema-ch/threema-android
xviii github.com/willowtreeapps/vocable
-android

xix github.com/woocommerce/woocommerce
-android

xx github.com/wordpress-mobile/WordPress
-Android

github.com/ankidroid/Anki-Android
github.com/OMIsie11/CovidNow
github.com/google/ground-android
github.com/google/iosched
github.com/mozilla-lockwise/lockwise-android
github.com/mozilla-lockwise/lockwise-android
github.com/MixinNetwork/android-app
github.com/haroldadmin/MoonShot
github.com/Chesire/Nekome
github.com/minvws/nl-covid19-notification-app-android
github.com/minvws/nl-covid19-notification-app-android
github.com/oliexdev/openScale
github.com/owntracks/android
github.com/pockethub/PocketHub
github.com/segler-alex/RadioDroid
github.com/BijoySingh/Scarlet-Notes
github.com/michaldrabik/showly-2.0
github.com/OMIsie11/SpaceXFollower
github.com/threema-ch/threema-android
github.com/willowtreeapps/vocable-android
github.com/willowtreeapps/vocable-android
github.com/woocommerce/woocommerce-android
github.com/woocommerce/woocommerce-android
github.com/wordpress-mobile/WordPress-Android
github.com/wordpress-mobile/WordPress-Android

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 11

Table 4: Descriptions of the resources

Resource Description

Auto Rotate An option used to allow the screen automatically rotates
Battery Saver An option used to select power management profiles
Bluetooth An option used to turn the access to Bluetooth connections on/off
Camera An option used to turn the camera on/off
Do Not Disturb An option used to control notifications, alarms, and vibration
Location An option used to turn the location on/off
Mobile Data An option used to turn the access to data in mobile networks on/off
Wi-Fi An option used to turn the access to wireless networks on/off
Accelerometer A sensor used to measure the acceleration force along the device axis
Gyroscope A sensor used to measure the rate of the rotation around the device

axis
Light A sensor used to determine the illuminance
Magnetometer A sensor used to determine the geomagnetic field strength along the

device axis
Orientation A sensor used to measure the device’s orientation
Proximity A sensor used to measure the distance from objects

Auto Rotate !Wi-Fi Battery_Saver Accelerometer Bluetooth Gyroscope Camera Light

Do_Not_Disturb Magnetometer !Location Orientation Mobile_Data Proximity

Fig. 3: An example of setting.

and One-Enabled generated 14 settings each. Most-Enabled-Disabled generated
2 settings and Pairwise generated 8 settings. A file with the configuration set
is used as input for the test execution.

3.5 Application Test Extension
We implemented a test instrumentation based on the UI Automator frame-
work12 to control the resources. The following resources are manageable
by mobile device users: Auto Rotate, Battery Saver, Bluetooth, Do Not Dis-
turb, Location, Mobile Data, and Wi-Fi. Therefore, we enable or disable these
resources interacting with Android Quick Settings. We control the other
resources using third-party applications. For instance, Camera is controlled by
Lens Cap13 and the sensors are managed by Sensor Disabler14. This application
requires a rooted Android device 15.

Figure 4 presents the icons used to control some resources used in this
study. The Location icon allows the user to control the device’s location. The
next icons allow the user to manage Wi-Fi (e.g, ParcTE_Ext is the name of
the connected network), Mobile data, and Bluetooth connections. The Battery

12https://developer.android.com/training/testing/ui-automator
13https://github.com/percula/LensCap
14https://github.com/wardellbagby/Sensor-Disabler
15https://en.wikipedia.org/wiki/Rooting_(Android)

https://developer.android.com/training/testing/ui-automator
https://github.com/percula/LensCap
https://github.com/wardellbagby/Sensor-Disabler
https://en.wikipedia.org/wiki/Rooting_(Android)

Springer Nature 2021 LATEX template

12 Evaluating testing strategies for resource related failures in mobile applications

Fig. 4: Android Quick Settings.

Saver icon allows the user to select power profiles related to battery consump-
tion. The Auto-rotate icon allows the user to turn the screen rotation on or off.
The Do Not Disturb icon allows the user to limit interruptions caused by sound,
vibration, and notifications. The Disable/Enable Camera icon, implemented by
Lens Cap, allows the control of the device camera.

The test instrumentation consists of the function AdjustResourceStates pre-
sented in Algorithm 1. For the required setting S, we enable (line 6) or disable
(line 8) each resource state (line 4) according to the state specified in the pair.

We implemented Resource_setup as a class with a static method annotated
with BeforeClass 16. We extended each class of the test suites with the imple-
mented class. Therefore, the execution of tests of a certain class is preceded by
the execution of the setup method. In the current implementation, we perform
the verification of resource state (line 5) via Android APIs, such as Location-
Manager 17 for the Location and TelephonyManager 18 for the Mobile Data.
In other cases, we use the UI Automator features to find some screen wid-
gets related to the resource state. For example, we inspect the sensors states
by processing screens of Sensor Disabler. It is important to emphasize that in
our implementation the resources are only adjusted (lines 6 and 8) if neces-
sary. Besides, we modified the build scripts in order to use the Android Test

16https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
17https://developer.android.com/reference/android/location/LocationManager
18https://developer.android.com/reference/android/telephony/TelephonyManager

https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/telephony/TelephonyManager

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 13

Orchestrator 19, a tool that helps minimize possible shared states, a known
factor associated to flaky tests (Parry et al., 2021) and isolate the crashes.

Algorithm 1 Resource_setup
1: Input
2: S list of < resource, state > pairs
3: procedure AdjustResourceStates(S)
4: for all pair ∈ S do
5: if pair.state == true then
6: enable(pair.resource)
7: else
8: disable(pair.resource)
9: end if
10: end for
11: end procedure

Algorithm 2 Test_execution_manager
1: Input
2: AP application with extended tests
3: SL list of settings
4: Output
5: TR test reports
6: maxExecutions← 3
7: for exec← 1 to maxExecutions do
8: shuffle(SL)
9: for all st ∈ SL do
10: AdjustResourceStates(st)
11: Execute the whole test suite of AP
12: end for
13: end for

3.6 Test Execution
We implemented Algorithm 2 for managing the test executions. We used three
executions (line 6) to deal with flaky tests, and shuffled the settings to minimize
order dependencies between tests (line 8). Multiple execution is a common
strategy for detecting flaky tests. As noted by Parry et al. (2021), there does
not seem to be a clear, optimal number of re-executions to identify flaky tests.
The study of Lam et al. (2020) suggests a maximum of five re-executions.

19https://developer.android.com/training/testing/junit-runner

https://developer.android.com/training/testing/junit-runner

Springer Nature 2021 LATEX template

14 Evaluating testing strategies for resource related failures in mobile applications

Based on previous essays, we set the number of re-executions to three. We took
to account our time constraints for the experiment and made the observation
that this number is sufficient to detect flaky tests.

We call the function AdjustResourceStates (line 10) defined in Algorithm 1
to adjust the states of all resources. We used the following devices: Samsung
Galaxy M30 with 4 GB RAM, Samsung Galaxy S10 with 8 GB RAM, and
Xiaomi Pocophone F1 with 6 GB RAM. All devices run Android 10. For each
device, we allocated a group of applications.

For illustrating the experimental effort, we synthesize the average execution
time of the test suites of each application in “Average Exec Time” column of
Table 3. The average CPU time was calculated considering three executions
of all testing strategies. We can see that the execution time varies between
4m 31s (Ground) and 1h 31m 1s (Mixin-Messenger). Considering the number
of settings of all strategies (68) and the total number of executions (3) the
total execution time vary between 15h 30m 24s and 12d 21h 27m 24s. From
our observations, we verify an expressive time overhead due to the use of the
Android Test Orchestrator mentioned in Section 3.5.

3.7 Test Report Analysis
We analysed test reports for identifying the failed test cases and registering
the related settings. For the same setting, multiple test cases can fail. For
each Android application, we use an implementation of the Apriori algorithm
(Agrawal & Srikant, 1994) to perform a frequent itemset mining analysis on
the occurrences of all settings that led a test case to fail. A frequent itemset is
defined as a set of items that occur together in at least a Support threshold
value of all transactions available. Support of an itemset is defined as the
proportion of transactions in the data set which contain the itemset (Hornik et
al., 2005). In this work, each item is a resource state i.e., enabled or disabled.
We empirically determine the Support as 0.1 (10%) (Marinho et al., 2021).
Values of the Support less than 10% caused the data resulting from the analysis
of the whole set of applications to increase from around 17 thousand records to
hundreds of thousands records 20. Moreover, the lower value for the Support
allowed us to do a more in-depth analysis, as can be seen in Section 4.3.

4 Results and Discussion
This section presents the study results and discusses them focusing on
providing answers to the research questions.

4.1 Failures Detected by Testing Strategies (RQ1)
A failed test case corresponds to a test case which originally terminated with
success and which, subjected to a change in the resource setting, fails. There-
fore, each failing test case corresponds to a failure despite the type (e.g., crash,

20A record include a set of resource states and the value of the Support achieved

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 15

assertion violation, etc) and the number of failures reported. Table 5 presents
the number of failing test cases for each testing strategy and the percentage
of failing test cases related to the total number of test cases (#TC). We used
the symbol “-” to indicate that the strategy was not able to detect failures.
Note that we executed the test suites three times for each application setting.
We report failures manifested in all three executions (see Section 3.6). Some
applications had only failures in one or two executions, such as Iosched and
RadioDroid. For each application, we highlight the strategies that achieved the
best results with respect to the percentage of failing test cases.

Table 5: Failing test cases for each testing strategy

Application #TC Random One-Dis One-Enab Most-Enab-Dis Pairwise

CovidNow 21 2(9%) 1(5%) 1(5%) 2(9%) -
Lockwise 38 4(10%) 4(10%) 4(10%) 4(10%) 4(10%)
Mixin-Messenger 160 2(1%) - 2(1%) 2(1%) 2(1%)
Nl-covid19 20 6(30%) 6(30%) 6(30%) 6(30%) 6(30%)
OwnTracks 27 3(11%) 3(11%) 3(11%) 3(11%) 3(11%)
PocketHub 107 3(3%) 1(1%) - - -
SpaceXFollower 30 4(13%) 2(6%) 4(13%) 1(3%) 4(13%)
Threema 54 1(2%) 1(2%) 1(2%) 1(2%) 1(2%)
Vocable 14 7(50%) 7(50%) 7(50%) 7(50%) 7(50%)
WordPress-Android 115 11(9%) 2(1%) 6(5%) 10(8%) 11(9%)

The percentage of failing test cases varied between 1% (e.g., One-Disabled
with PocketHub) and 50% (e.g., all strategies with Vocable). Note that some
applications have a low number of test cases, such as Vocable (14) and
Nl-covid19 (20). Random had high percentages of failing test cases (10 appli-
cations), followed by Pairwise (8 applications). Overall, we can see that these
failures are not common since the percentages for most of the applications
(with the exception of Nl-covid19 and Vocable) are lower than 13%. A remark-
able case occurred to PocketHub, for which only Random and One-Disabled
were able to detect failures with percentages of failing test cases of 3% and
1%, respectively.

4.2 The Most Effective Testing Strategies (RQ2)
Table 6 presents the number of settings that cause failures (FS) and Effec-
tiveness (E) calculated using Equation 1 of Section 3.1. Similarly to RQ1, we
consider only settings that cause failures in three executions. We used the sym-
bol “-” to indicate that none of the strategy settings were able to detect failures.
We highlight in Table 6 the most effective strategies for each application.

The most effective strategies were One-Enabled (8 applications) and One-
Disabled (4 applications). The effectiveness of One-Disabled and One-Enabled
varied widely from 0.07 to 1.00. We can also observe that the effectiveness of
Most-Enabled-Disabled and Pairwise oscillated between 0.25 and 1.00 despite

Springer Nature 2021 LATEX template

16 Evaluating testing strategies for resource related failures in mobile applications

Table 6: Effectiveness of testing strategies

Random One-Disabled One-Enabled Most-Enab-Dis Pairwise

Application FS E FS E FS E FS E FS E

CovidNow 17 0.57 1 0.07 13 0.93 1 0.50 - -
Lockwise 30 1.00 14 1.00 14 1.00 2 1.00 8 1.00
Mixin-Messenger 5 0.17 - - 12 0.86 1 0.50 2 0.25
Nl-covid19 26 0.87 8 0.57 14 1.00 1 0.50 6 0.75
OwnTracks 14 0.47 14 1.00 14 1.00 2 1.00 8 1.00
PocketHub 3 0.10 1 0.07 - - - - - -
SpaceXFollower 30 1.00 14 1.00 14 1.00 2 1.00 8 1.00
Threema 14 0.47 13 0.93 1 0.07 1 0.50 4 0.50
Vocable 5 0.17 1 0.07 13 0.93 1 0.50 4 0.50
WordPress-Android 18 0.60 2 0.14 12 0.86 1 0.50 4 0.50

the low number of settings of each strategy (2 and 8, respectively). These
two strategies can be used in a test environment in which a trade-off between
execution time and effectiveness is required.

4.3 Resource Interactions Most Likely to Cause Failures
(RQ3)

Aiming to understand the resource interactions most likely to cause failures,
we perform a frequent item set mining analysis (Agrawal et al., 1993). We con-
sider the settings that cause the test cases to fail. From this analysis, we can
observe which resource pairs have more impact on failures, since the support
of pairs is greater compared to other resource combinations. Table 7 shows
the three most common pairs and the support for each application, consid-
ering the whole set of all testing strategies. We use an exclamation mark to
indicate when the resource is disabled. The pairs are often distinct among the
applications. Only the pair 〈!Mobile_Data, !Wi-Fi〉 is the most common for
four applications (CovidNow, Mixin-Messenger, SpaceXFollower, and WordPress-
Android). In general, the pairs include at least one of the resources identified
from the application Manifest file as presented in Section 3.3.

Figures 5, 6, and 7 show heat maps with the supports of resource pairs for
each application. Figure 5 presents the pairs for the whole set of applications
exhibiting the resource names along the axes. We can observe in Figure 5 that
failures are frequently caused to disabled resources, such as !Mobile_Data,
and !Wi-Fi. Figures 6 and 7 present an overview of the pairs for the remain-
ing applications. Eight applications (CovidNow, Lockwise, Mixin-Messenger,
Nl-covid19, OwnTracks, SpaceXFollower, Vocable, and WordPress-Android) have
most failures related to pairs of disabled resources. Four applications (Lockwise,
OwnTracks, PocketHub, and Threema) have most failures related to pairs of
enabled resources. For PocketHub and Threema, Battery_Saver and Do_Not_-
Disturb are the most common pairs of resources causing failures since these
resources are restrictive when they are enabled. For instance, Battery Saver,

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 17

Table 7: Most common resource pairs per application

Application Resource Pair Support

CovidNow 〈!Mobile_Data, !Wi-Fi〉 0.86
CovidNow 〈!Light, !Wi-Fi, 〉 0.80
CovidNow 〈!Light, !Mobile_Data〉 0.77
Lockwise 〈Accelerometer,Bluetooth〉 0.41
Lockwise 〈Accelerometer, Light〉 0.41
Lockwise 〈Accelerometer, Proximity〉 0.41
Mixin-Messenger 〈!Mobile_Data, !Wi-Fi〉 1.00
Mixin-Messenger 〈!Gyroscope, !Wi-Fi〉 0.85
Mixin-Messenger 〈!Gyroscope, !Mobile_Data〉 0.85
Nl-covid19 〈!Accelerometer, !Bluetooth〉 0.66
Nl-covid19 〈!Accelerometer, !Mobile_Data〉 0.61
Nl-covid19 〈!Accelerometer, !Wi-Fi〉 0.60
OwnTracks 〈!Light, !Location〉 0.47
OwnTracks 〈!Battery_Saver, !Location〉 0.47
OwnTracks 〈!Camera, !Location〉 0.47
PocketHub 〈Gyroscope,Wi-Fi〉 0.75
PocketHub 〈Light,Wi-Fi〉 0.75
PocketHub 〈Battery_Saver,Mobile_Data〉 0.75
SpaceXFollower 〈!Accelerometer, !Wi-Fi〉 0.58
SpaceXFollower 〈!Mobile_Data, !Wi-Fi〉 0.53
SpaceXFollower 〈!Orientation, !Wi-Fi〉 0.53
Threema 〈Do_Not_Disturb,Magnetic_Field〉 0.78
Threema 〈Bluetooth,Do_Not_Disturb〉 0.73
Threema 〈Auto_Rotate,Do_Not_Disturb〉 0.73
Vocable 〈!Camera, !Magnetic_Field〉 0.83
Vocable 〈!Camera, !Proximity〉 0.80
Vocable 〈!Battery_Saver, !Camera〉 0.75
WordPress-Android 〈!Mobile_Data, !Wi-Fi〉 0.92
WordPress-Android 〈!Bluetooth, !Wi-Fi〉 0.81
WordPress-Android 〈!Gyroscope, !Wi-Fi〉 0.81

when enabled, limits the executions of background functionalities 21, such as
location updates.

4.4 Implications
The results of our study provided practical implications for testers, practition-
ers, researchers, and tool builders.

Implications for Testers. Our results indicate that testers must be aware
of the resource interaction failures when implementing test suites. Moreover,
we suggest that the adoption of the testing strategies be guided by considera-
tions of the execution times and the effectiveness of the generated settings. In
this way, the strategies with a low number of settings, such as Most-Enabled-
Disabled and Pairwise, can be used in test environments where there are tight
execution time constraints, despite they are not the most effective strategies.

21https://developer.android.com/about/versions/pie/power

https://developer.android.com/about/versions/pie/power

Springer Nature 2021 LATEX template

18 Evaluating testing strategies for resource related failures in mobile applications

Fig. 5: Two-resources interactions - All applications.

Implications for Developers. Our results suggest that developers can
benefit from our findings, particularly, when designing and implementing their
applications. They can look for resource interaction pairs that have more
impact on failures, starting from those declared in the Manifest file. These
pairs can also be evaluated in testing activities closer to the development, such
as unit and integration testing. Therefore, we can see the direction to decrease
the overhead of our instrumentation code, for example, managing the resources
only using APIs 22 to avoid the need for GUI interactions often not common
during unit and integration testing.

Implications for Researchers. Researchers have the opportunity to
explore other dimensions of resource interaction failures. First, they can
explore what code elements are more prone to this kind of failure, for exam-
ple, using object-oriented metrics and looking for correlations between classes
and the faults behind the failures (Ferreira et al., 2021). Other opportunity
is the exploration of testing strategies focused on resources explicitly used by
the application. We see the potential use of code analysis techniques aiming
to identify resources directly used by the application. However, there must
be a carefully approach to deal with resources used in a indirect way (for

22Two Android APIs are mentioned in Section 3.5

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 19

(a) CovidNow (b) Lockwise

(c) Mixin-Messenger (d) Nl-covid19

(e) OwnTracks (f) Pockethub

Fig. 6: Two-resources interactions - Part 1.

Springer Nature 2021 LATEX template

20 Evaluating testing strategies for resource related failures in mobile applications

(a) SpaceXFollower (b) Threema

(c) Vocable (d) WordPress-Android

Fig. 7: Two-resources interactions - Part 2.

instance, an application using the Camera can also require the Location for
image tagging).

Implications for Tool Builders. Tool builders can automate improved
techniques so that they can be used by practitioners and testers. As some
studies show (Pecorelli et al., 2022; Luo et al., 2020; Silva et al., 2018), there
are limitations in IDEs, emulators, and frameworks to simulate events that
are different from those of the GUI. These events are sometimes referred to
as system events (Cai & Ryder, 2020) or context events (Luo et al., 2020).
The design principles of our instrumentation can be used to support handling
of contextual events in mobile application testing and extending existing test
suites.

5 Threats to Validity
One of the main concerns when performing case studies like ours is the valid-
ity of results and their applicability to other contexts. Although we carefully

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 21

designed and conducted our study, some threats to validity may have harmed
our study results and discussions. We discuss some threats to the study validity
based on four well-known categories of validity threats (Wohlin et al., 2012):
construct, internal, external, and conclusion.

Construct Validity. The construct validity reflects what extent the oper-
ational measures that are studied represent what the researchers have in mind
and what is investigated according to the research questions (Wohlin et al.,
2012). In our study, the first threat to construct validity is related to how
we extend test suites and control the resource states (enabled/disabled). To
mitigate this threat, all co-authors of this study carefully inspected the imple-
mented code. Another threat to construct validity concerns the choice of the
analyzed applications and metrics. We opt to select twenty different projects
to favor external validity as discussed below. However, these metrics may not
properly capture how the testing strategies perform in mobile applications. To
mitigate this threat, we rely on well-known metrics to quantify failures and
effectiveness of the testing strategies. We also discussed among the authors
aiming to select the best metrics available according to our research questions.

Internal Validity. The internal validity is related to uncontrolled factors
that may affect the study results (Wohlin et al., 2012). The execution of the
study steps is a threat to the internal validity, since a poor execution may
result in the collection of incorrect data. For instance, we discarded from our
study small Android applications with less than 400 lines of test code. Some
uncontrolled factors could also emerge from our instrumentation of test cases.
To minimize threats due to our instrumentation, we set the resource status
manually and ran the tests that identified faults in each faulty configuration.
Finally, we restricted our study to run each test suite three times for each
application. This time constraint may affect our findings since flaky tests can
occur in other executions. Lam et al. (2020) suggests that five reruns are able
to detect 88% of flaky tests (three reruns detect more than 75%). According to
our evaluations, we observed three separate runs were sufficient to find the flaky
tests which oscillated between 20% (Mixin-Messenger) and 75% (PocketHub)
of total failed tests observed for each application.

Our solution may not be very robust to different Android versions, since
we use rooted devices in order to manage the individual sensors by means of
the Sensor Disabler application that we were able to set up in devices running
Android 10. One of the reasons of our option for physical devices is the con-
straints present in emulators, such as the lack of native support for bluetooth
connections, control (enable/disable) of individual sensors, and the test execu-
tion performance. Sensor Disabler requires the installation of a module of the
Xposed framework 23 that only executes in rooted devices. This module was
tested and confirmed to work on devices with Android 5 to Android 10 24. We
believe that improvements of the testing support of emulators would help us
to scale our experimental methodology.

23https://github.com/ElderDrivers/EdXposed
24https://github.com/wardellbagby/sensor-disabler

https://github.com/ElderDrivers/EdXposed
https://github.com/wardellbagby/sensor-disabler

Springer Nature 2021 LATEX template

22 Evaluating testing strategies for resource related failures in mobile applications

External Validity. The external validity concerns the ability to generalize
the results to other environments, such as to industry applications and systems
(Wohlin et al., 2012). Regarding this validity threat, we have performed our
study with twenty Android applications and five sampling strategies. We also
restricted our analysis to mobile applications developed in the Java and Kotlin
programming languages. Therefore, we cannot generalize to other program-
ming languages and frameworks, such as Flutter and React Native. In fact,
the selected applications may not represent the characteristics of all Android
applications. However, we selected popular applications with more than 100
stars from various domains, longevity, and sizes. With respect to the testing
strategies, we focus on some of the most investigated strategies based on sev-
eral research papers (Ferreira et al., 2021; Souto et al., 2017; Medeiros et al.,
2016).

Conclusion Validity. The conclusion validity concerns with issues that
affect the ability to draw the correct conclusions from the study (Wohlin et
al., 2012). These results reflect our perceptions and interpretations of the met-
rics collected from the applications after running the testing strategies. All
authors participated in the data analysis process and discussions on the main
findings, to mitigate the bias of relying on the interpretations of a single per-
son. Nonetheless, there may be other important aspects in the data collected,
not yet discovered or reported by us. For instance, for answering the research
questions, we assumed that the identified failures are related to interactions of
the 14 managed resources. Nevertheless, the failures can be caused by other
resources not considered in this study that may be interacting with some of the
managed resources. However, we believe that similar conclusions would also
be achieved using different metrics and tools that quantify similar attributes
for the same mobile applications.

6 Related Work
Combinatorial Testing Approaches for Highly-Configurable Sys-
tems. Several works have investigated different strategies to deal with the
combinatorial explosion problem in the context of highly-configurable systems.
For instance, Ferreira et al. (2021) compared Random, 1-, 2-, 3-, and 4-wise sam-
pling testing strategies, generated by four distinct algorithms, in terms of effi-
ciency and effectiveness. In our study, we used Random and Pairwise. Medeiros
et al. (2016) compared the selected sample sizes and the fault-detection capa-
bilities of 10 current state-of-the-art sampling algorithms. We evaluate a
subset of these algorithms in the context of mobile applications, namely Pair-
wise, Random, One-Enabled, One-Disabled, and Most-Enabled-Disabled. Souto
et al. (2017) used One-Enabled, One-Disabled, Most-Enabled-Disabled, and Pair-
wise sampling techniques to combine them with a previous sound technique
(SPLat) in order to validate their proposed soundness algorithm, S-SPLat.
However, they did not provide a comparison among sampling techniques as we
do in this work.

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 23

Secondary Studies on Mobile Applications Testing. We perceived
mobile applications testing has been an active research field, as evidenced by
several secondary studies (Júnior et al., 2022; Villanes, Endo, & Dias-Neto,
2022; Luo et al., 2020; Tramontana et al., 2019). Júnior et al. (2022) present a
systematic mapping of testing techniques and tools for non-functional require-
ments, identifying quality characteristics addressed by the primary studies.
Among these, the compatibility and portability are related to the proper
operation of applications considering the huge diversity of devices and plat-
forms (Villanes et al., 2022). In this study, we also evaluate the variety of
resource settings that is to some degree related to compatibility testing.

Luo et al. (2020) give an overview of context simulation methods for testing
mobile context-aware applications and highlight the challenges for tackling the
generation of dynamic input data commonly originating from sensors. In this
study, we also deal with the complexity of input data by enabling/disabling
resources.

Tramontana et al. (2019) use a systematic mapping to analyze stud-
ies involving the automation of functional testing of mobile applications.
They claim that there is some scarcity of studies considering the context-
aware aspects for functional testing, such as the sources of contextual events
(e.g., sensors, Internet connections, etc). Our study targets the expansion of
test suites of instrumented tests, a kind of functional testing, with specific
contextual information of the resource states.

Combinatorial Testing Approaches for Mobile Applications. In the
context of testing Android applications, we found works that study the combi-
natorial explosion of testing with distinct targets, like combining application’s
preferences, system settings, device and operating system characteristics. For
instance, Wei et al. (2018) focus on understanding the fragmentation-induced
compatibility (FIC) issues in Android applications. Such issues occur due to
fast-evolving Android platforms (many versions and API levels) and numer-
ous device models. Different from our study and the others mentioned above,
they inspect source code and FIC-related problems and fixes and propose a
tool (FicFinder). However, they do not perform any kind of combinatorial
testing.

Lu et al. (2019) work was motivated by the fact that each application can
provide its specific set of preferences to the end user. For instance, the appli-
cation’s preferences screen may present distinct types of widgets (checkboxes,
lists, etc.) to set the option values that change the app’s behaviour. The pref-
erence set sizes of the 30 subject systems in their study vary between 5 and 96
(27 in average). Therefore, testing all combinations of preference options is also
impracticable. To tackle this problem, they proposed Prefest, an automatic
preference-wise testing approach that uses static and dynamic combined anal-
ysis to locate the preferences that may affect the test cases and execute them
only under necessary option combinations. Instead of proposing a technique,
we brought to the context of Android testing five well established sampling
strategies that suggest, statically, combinations of settings to test.

Springer Nature 2021 LATEX template

24 Evaluating testing strategies for resource related failures in mobile applications

Vilkomir (2018) also tackled a combinatorial testing problem. Their study
focused on device-specific faults, the multi-device testing coverage problem,
since it is impracticable to test all combinations of devices, resolutions, reso-
lution types, Android OS versions, screen sizes and RAM capacity. The goal
was determining how many devices must be tested and which methods for
device selection are best for revealing device-specific faults. For instance, OS
coverage and each-choice (1-wise) were recommended as reasonable and prac-
tical approaches that are highly effective for fault detection with testing on a
relatively small number of mobile devices. In this study, although using three
distinct smartphone devices, we focused on the sampling combination strate-
gies of the 14 resources available in each smartphone running Android 10. One
of them, pair-wise, generates sets that embrace each-choice sets.

Sun et al. (2021) addressed a problem similar to the one we investigate,
named setting-related defects (or “system defects”). They focuses on user con-
figurable system settings with more than 50 options, which we call resources.
However, their work is limited to defects caused by settings changes (enabling
or disabling) during the usage of applications and argued that “generic state-
of-the-art generic application testing techniques are limited to detecting crash
failures due to the lack of strong test oracles, while many setting defects are
logical ones that lead to application freezing, functionality failures, or GUI
display failures”. While they mined defects by using bug reports based on the
option keywords and investigated them, we used sampling and combinatorial
strategies to find failures and, mainly, to compare such strategies. They pro-
posed setting-wise metamorphic fuzzing, the first automated testing approach
to effectively detect setting defects without explicit oracles while we investi-
gate the resource interaction more likely to cause failures (Section 4.3). They
noted that only about 2% of setting defects are caused by the mutual influence
between two settings, what we call resource interaction failures in Section 2.1.
However, we found a more considerable amount of this kind of failures, as can
be seen in Section 4.1.

Table 8 provides a brief comparison between our study and similar previous
studies. In each case, the columns refer to the individual studies. The rows
show the characteristics of the studies, such as which strategy or technique
was used. As we can see, in our study we use established sampling testing
strategies to deal with combinatorial aspects of the settings being tested. We
use a dash ‘-’ to indicate information not available in the respective study.

Previous Study. In our previous study (Marinho et al., 2021), we
search for sensor-interaction failures by testing all combinations of 8 resources
in Android applications. The resources Accelerometer, Barometer, Camera,
Gyroscope, Magnetometer, Microphone, and Proximity were handled as a
unique sensor (we named “usual sensors”) in Android Quick Settings. In this
follow-up study, we expanded our analysis to 14 resources by (i) handling
five out of the six “usual sensors” as separated resources (Barometer is out);
(ii) using all other seven sensors the same way as in the previous study; and
(iii) including two new resources: Light and Orientation. Due to increased

Springer Nature 2021 LATEX template

Evaluating testing strategies for resource related failures in mobile applications 25

Table 8: Comparison Summary

This
study

Wei et al.
(2018)

Lu et al.
(2019)

Vilkomir
(2018)

Sun et al.
(2021)

Operating System Android Android Android Android Android

Applications 20 53 30 15 31

Strategies-
Techniques

Sampling FicFinder Pairwise,
PrefTest

Each-
Choice

Setting-wise
metamorphic
fuzzing

Comparison Ele-
ments (Resources,
hardware options)

14 - 4 5 > 50

Applications with
failures

10 - 5 15 29

number of resources, it was impractical to run all possible settings (214) and,
therefore, we choose 5 sampling testing strategies to suggest sets of settings
with which we were able to look for resource-interaction failures.

7 Conclusion and Future Work
In this work, we evaluated sampling testing strategies in the context of resource
related failures of mobile applications. Our study involves 14 typical mobile
resources. The dataset includes 20 applications with different characteristics
(category, Test LOC, Test cases etc). We identified the number of failures from
the amount of failing test cases detected by each strategy, the most effective
strategies, and the resource interactions more likely to cause failures. Our
approach relied on multiple executions for minimizing the effects of flaky tests.
Therefore, from the initial set of application, our analysis was focused on eight
applications that had failures in three executions.

As a result, Random had great percentages of failing test cases, followed
by Pairwise. We found that resource related failures are not so common, such
as for pocketHub. For this application, Random and One-Disabled had 3% and
1% of failing test cases, respectively. Concerning the effectiveness, we found
that One-Enabled and One-Disabled were the most effective strategies for eight
and four applications, respectively. On the other hand, Most-Enabled-Disabled
and Pairwise can be used in development contexts where there must be a
balance between test execution time and effectiveness. Concerning the par-
ticularities of resource interactions more likely to cause failures, we found
that resource pairs have more influence on failures. Most of the applications
have failures related to pairs of disabled resources. The exceptions are related
mainly to Battery_Saver and Do_Not_Disturb that are restrictive when they
are enabled. Surprisingly, the pairs varied widely among the applications and
include resources identified from the Manifest file.

Springer Nature 2021 LATEX template

26 References

Our results can be used by developers and testers as a decision making
support for considering resource interactions when implementing their test
suites. Moreover, they can benefit in use sampling strategies to improve or
propose testing approaches. Researchers can benefit from our analysis and
replicate our study for other mobile applications technologies besides Android.

As future work, we suggest further studies to include other resources and
the investigation of cloud testing (Bertolino et al., 2019) aiming to decrease
the test execution effort. Another direction is the exploration of other
sampling strategies such as statement-coverage and other t-wise strategies.
Moreover, the faults behind the resource interaction failures can be used to
determine the classes more prone to this kind of failure. Therefore, we can
investigate whether these classes differ from other classes, e.g., by determining
traditional source code metrics and CK metrics.

Author Contributions
Euler Horta Marinho, Fischer Ferreira, and João P. Diniz were responsible

for the data collection. All authors were involved with data analysis as well as
writing and reviewing the manuscript.

Funding Declaration
This work was partially supported by Brazilian funding agencies: CAPES

and CNPq.
Conflict of Interest Statement
The authors declare that there is no conflict of interest.
Data Availability Statement
The data used in this study is available in a public repository at

https://eulerhm.github.io/samplingapptest

References
Abal, I., Brabrand, C., & Wasowski, A. (2014). 42 variability bugs in the

Linux Kernel: A qualitative analysis. In Proceedings of the ACM/IEEE
International Conference on Automated Software Engineering (ASE)
(p. 421–432).

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association
rules between sets of items in large databases. In Proceedings of
the 1993 ACM SIGMOD International Conference on Management of
Data (p. 207–216). New York, NY, USA: Association for Computing
Machinery.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules.
In Proceedings of the International Conference on Very Large Databases
(VLDB) (Vol. 1215, pp. 487–499).

Al-Hajjaji, M., Krieter, S., Thüm, T., Lochau, M., & Saake, G. (2016). Incling:
efficient product-line testing using incremental pairwise sampling. ACM
SIGPLAN Notices, 52 (3), 144–155.

Amalfitano, D., Amatucci, N., Memon, A. M., Tramontana, P., & Fasolino,

Springer Nature 2021 LATEX template

References 27

A. R. (2017). A general framework for comparing automatic testing
techniques of android mobile apps. Journal of Systems and Software,
125 , 322-343.

Apel, S., Batory, D., Kastner, C., & Saake, G. (2013). Feature-oriented software
product lines. Springer Berlin / Heidelberg.

Apel, S., Kolesnikov, S., Siegmund, N., Kästner, C., & Garvin, B. (2013).
Exploring feature interactions in the wild: The new feature-interaction
challenge. In proceedings of the 5th international workshop on feature-
oriented software development (fosd).

Barr, E., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015). The oracle
problem in software testing: a survey. IEEE Transactions on Software
Engineering , 41 , 507–525.

Bertolino, A., Angelis, G. D., Gallego, M., García, B., Gortázar, F., Lonetti,
F., & Marchetti, E. (2019). A systematic review on cloud testing. ACM
Computing Surveys, 52 (5).

Borges, H., & Valente, M. T. (2018). What’s in a GitHub star? understanding
repository starring practices in a social coding platform. Journal of
Systems and Software, 146 , 112-129.

Bowen, T. F., Dworack, F., Chow, C., Griffeth, N., Herman, G. E., & Lin,
Y.-J. (1989). The feature interaction problem in telecommunications
systems. In Proceedings of the 7th International Conference on Software
Engineering for Telecommunication Switching Systems (SETSS) (pp. 59–
62).

Cai, H., & Ryder, B. (2020). A longitudinal study of application structure
and behaviors in Android. IEEE Transactions on Software Engineering ,
47 (12), 2934–2955.

Coelho, J., Valente, M. T., Milen, L., & Silva, L. L. (2020). Is this github
project maintained? Measuring the level of maintenance activity of open-
source projects. Information and Software Technology , 122 , 106274.

Cohen, M. B., Dwyer, M. B., & Shi, J. (2007). Interaction testing of highly-
configurable systems in the presence of constraints. In Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA) (p. 129–139).

Escobar-Velásquez, C., Linares-Vásquez, M., Bavota, G., Tufano, M., Moran,
K., Di Penta, M., . . . Poshyvanyk, D. (2020). Enabling mutant gener-
ation for open- and closed-source Android apps. IEEE Transactions on
Software Engineering (TSE), 48 (1), 186-208.

Ferreira, F., Vale, G., Diniz, J. P., & Figueiredo, E. (2021). Evaluating T-wise
testing strategies in a community-wide dataset of configurable software
systems. Journal of Systems and Software (JSS), 110990.

Galindo, J. A., Turner, H., Benavides, D., & White, J. (2016). Testing
variability-intensive systems using automated analysis: an application to
Android. Software Quality Journal (SQJ), 24 , 365–405.

Hornik, K., Grün, B., & Hahsler, M. (2005). arules-a computational envi-
ronment for mining association rules and frequent item sets. Journal of

Springer Nature 2021 LATEX template

28 References

Statistical Software, 14 (15), 1–25.
Júnior, M. C., Amalfitano, D., Garcés, L., Fasolino, A. R., Andrade, S. A.,

& Delamaro, M. (2022). Dynamic testing techniques of non-functional
requirements in mobile apps: A systematic mapping study. ACM
Computing Surveys (CSUR), 54 (10s), 1–38.

Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T. F., & Klein, J. (2018). Auto-
mated testing of Android apps: A systematic literature review. IEEE
Transactions on Reliability , 68 (1), 45–66.

Lam, W., Winter, S., Astorga, A., Stodden, V., & Marinov, D. (2020).
Understanding reproducibility and characteristics of flaky tests through
test reruns in Java projects. In ISSRE 2020: 31st IEEE International
Conference on Software Reliability Engineering (pp. 403–413).

Lu, Y., Pan, M., Zhai, J., Zhang, T., & Li, X. (2019). Preference-wise test-
ing for Android applications. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE) (pp.
268–278).

Luo, C., Goncalves, J., Velloso, E., & Kostakos, V. (2020). A survey of
context simulation for testing mobile context-aware applications. ACM
Computing Surveys (CSUR), 53 (1), 1–39.

Marinho, E. H., Diniz, J. P., Ferreira, F., & Figueiredo, E. (2021). Evaluating
sensor interaction failures in mobile applications. In International Con-
ference on the Quality of Information and Communications Technology
(QUATIC) (pp. 49–63).

Mateus, B. G., & Martinez, M. (2019). An empirical study on quality of
Android applications written in Kotlin language. Empirical Software
Engineering , 24 , 3356-3393.

Medeiros, F., Kästner, C., Ribeiro, M., Gheyi, R., & Apel, S. (2016). A
comparison of 10 sampling algorithms for configurable systems. In 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE) (pp. 643–654).

Nie, C., & Leung, H. (2011). A survey of combinatorial testing. ACM
Computing Surveys (CSUR), 43 (2), 1–29.

Parry, O., Kapfhammer, G. M., Hilton, M., & McMinn, P. (2021). A survey of
flaky tests. ACM Transactions on Software Engineering and Methodology
(TOSEM), 31 (1).

Pecorelli, F., Catolino, G., Ferrucci, F., De Lucia, A., & Palomba, F. (2022).
Software testing and Android applications: a large-scale empirical study.
Empirical Software Engineering , 27 (2).

Silva, D. B., Eler, M. M., Durelli, V. H., & Endo, A. T. (2018). Characterizing
mobile apps from a source and test code viewpoint. Information and
Software Technnology , 101 , 32–50.

Souto, S., d’Amorim, M., & Gheyi, R. (2017). Balancing soundness and effi-
ciency for practical testing of configurable systems. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE) (pp.

Springer Nature 2021 LATEX template

References 29

632–642).
Sun, J., Su, T., Li, J., Dong, Z., Pu, G., Xie, T., & Su, Z. (2021). Under-

standing and finding system setting-related defects in Android apps. In
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA) (pp. 204–215).

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., & Leich,
T. (2014). FeatureIDE: An extensible framework for feature-oriented
software development. Science of Computer Programming , 79 , 70-85.

Tramontana, P., Amalfitano, D., Amatucci, N., & Fasolino, A. R. (2019). Auto-
mated functional testing of mobile applications: a systematic mapping
study. Software Quality Journal (SQJ), 27 (1), 149–201.

Vilkomir, S. (2018). Multi-device coverage testing of mobile applications.
Software Quality Journal (SQJ), 26 (2), 197–215.

Villanes, I. K., Endo, A. T., & Dias-Neto, A. C. (2022). A multivocal litera-
ture mapping on mobile compatibility testing. International Journal of
Computer Applications in Technology , 69 (2), 173–192.

Wei, L., Liu, Y., Cheung, S.-C., Huang, H., Lu, X., & Liu, X. (2018). Under-
standing and detecting fragmentation-induced compatibility issues for
Android apps. IEEE Transactions on Software Engineering (TSE),
46 (11), 1176–1199.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslen,
A. (2012). Experimentation in Software Engineering. Springer Berlin /
Heidelberg.

	Introduction
	Background
	Resource Interaction Failures
	Sampling Testing Strategies

	Study Design
	Research Questions
	Study Phases
	Application Selection
	Setting Definition
	Application Test Extension
	Test Execution
	Test Report Analysis

	Results and Discussion
	Failures Detected by Testing Strategies (RQ1)
	The Most Effective Testing Strategies (RQ2)
	Resource Interactions Most Likely to Cause Failures (RQ3)
	Implications

	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

