
Applying Spectrum-Based Fault Localization to Android
Applications

Euler Horta Marinho
Federal University of Minas Gerais

Brazil
eulerhm@dcc.ufmg.br

Fischer Ferreira
Federal University of Ceara

Brazil
fischer.ferreira@sobral.ufc.br

João P. Diniz
Federal University of Minas Gerais

Brazil
jpaulo@dcc.ufmg.br

Eduardo Figueiredo
Federal University of Minas Gerais

Brazil
figueiredo@dcc.ufmg.br

ABSTRACT
The pressing demand for high-quality mobile applications has a
major influence on Software Engineering practices, such as testing
and debugging. The variety of mobile platforms is permeated with
different resources related to communication capabilities, sensors,
and user-controlled options. As a result, applications may exhibit
unexpected behaviors and resource interactions can introduce fail-
ures that manifest themselves in specific resource combinations.
These failures can affect the quality of mobile applications and
degrade the user experience. To reduce human effort of manual
debugging, several techniques have been proposed and developed
aiming to partially or fully automate fault localization. Fault lo-
calization techniques, such as Spectrum-based Fault Localization
(SBFL), identify suspicious faulty program elements related to a
software failure. However, we still lack empirical knowledge about
the applicability of fault localization techniques in the context of
mobile applications, specifically considering resource interaction
failures. To address this problem, this paper evaluates the use of
SBFL aiming to locate faults in 8 Android applications and verify the
sensitivity of SBFL to variations in resource interactions. We rely
on mutation testing to simulate faults and on the Ochiai coefficient
as an indicator of the suspicious faulty code. Our results indicate
that SBFL is able to rank more than 75% of the faulty code in 6 out
of 8 applications. We also observed that the ranking of suspicious
code varies depending on the combination of enabled resources
(e.g., Wi-Fi and Location) in the mobile applications.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
mobile applications, resource interactions, fault Localization, SBFL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBES 2023, September 25–29, 2023, Campo Grande, Brazil
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0787-2/23/09. . . $15.00
https://doi.org/10.1145/3613372.3613397

ACM Reference Format:
Euler HortaMarinho, Fischer Ferreira, João P. Diniz, and Eduardo Figueiredo.
2023. Applying Spectrum-Based Fault Localization to Android Applications.
In XXXVII Brazilian Symposium on Software Engineering (SBES 2023), Septem-
ber 25–29, 2023, Campo Grande, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3613372.3613397

1 INTRODUCTION
The growth of the mobile application market, for instance, due to
the popularity of application store, has brought new challenges to
their development and testing. For instance, the pressing demand
for high quality applications has an important influence on Software
Engineering practices, such as testing and debugging [10]. Testing
is one of the most important approaches to quality assurance in
the field of mobile applications, as evidenced by several secondary
studies [22, 27, 45, 47]. For a proper software testing, we also need
debugging which is another quality assurance activity aimed at
the localization and removal of faults [55]. Nevertheless, manual
debugging can be extremely challenging, tedious, and costly, since it
relies heavily on the software developer experience, judgment, and
intuition to identify and prioritize code that is likely to be faulty [6].
Therefore, developing techniques have been proposed aiming to
partially or fully automate fault localization while reducing human
effort [52].

Fault localization techniques aim to identify faulty program ele-
ments related to software failures using static or run-time informa-
tion to determine the root cause of the failure [57]. Some of these
techniques, such as Spectrum-based Fault Localization (SBFL), can
produce a ranked list of suspicious code elements for developers,
reducing their effort for manual fault checking [6]. Intuitively, the
more a code element is executed by failing test cases, the more
suspicious it is [19]. An SBFL technique often calculates suspicious-
ness scores using a ranking metric also known as a risk evaluation
formula [57]. Ochiai [2], DStar [51], and Tarantula [21] are among
the most common metrics for this purpose [36].

Several techniques have been proposed and evaluated for fault
localization [40, 52, 54]. Nonetheless, these techniques must be
assessed for mobile applications, since they may demand tailored
quality assurance approaches due to mobile specific characteris-
tics [20, 42, 43, 49]. For instance, debugging mobile applications is
challenging and the localization of the faulty code may not even be
apparent from the stack trace [23].

https://doi.org/10.1145/3613372.3613397
https://doi.org/10.1145/3613372.3613397

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Marinho, et al.

Mobile applications typically run on a variety of platform con-
figurations [15]. Each platform configuration relies on a different
set of enabled platform resources making application testing and
debugging more challenging. Application resources can be related
to communication features (e.g., Wi-Fi and GPS), sensors (e.g., Ac-
celerometer and Gyroscope), and user-controlled options (e.g., Bat-
tery Saving and Do Not Disturb). Some of these resources can be
managed directly through system-level settings, such as the An-
droid Quick Settings 1, which allow the user to customize many
system or application behaviors [26]. However, applications may ex-
hibit unexpected behavior due to failures that manifest themselves
in certain combinations of enabled resources [29, 43]. According to
Sun et al. [43], failures involving two resources are critical but not
very common in mobile applications. Another study [29] found a
greater number of this type of failure.

In this work, we evaluate the use of the SBFL technique [1]
aiming to locate faults in Android applications and verify the sensi-
tivity to resource interaction failures. We use faults seeded from
mutation operators in order to conduct the experimental study
and rely on the Ochiai coefficient as an indicator of the suspicious
faulty code [2]. Although there are many metrics for calculating
the suspiciousness score, the Ochiai coefficient is considered one of
the metrics with the best performance [36, 57]. Despite the Ochiai
coefficient was preliminary used in mobile applications[28], we still
lack knowledge about its applicability in the context of open source
mobile applications, especially with respect to resource interaction
failures, since the SBFL was not designed for these types of failures.
Testers and developers may neglect to properly test and debug
mobile applications considering resource interactions because they
lack knowledge about such failures [29]. In consequence, these
failures may occur during everyday use of the mobile application,
while they are not noticeable during the testing and debugging
activities.

To achieve our goal in this study, we follow four steps. First, we
select 8 open source applications from GitHub used in our previous
study [29]. Second, we use a tool [12] to generate mutants for each
target application. We generate mutants for two groups of classes,
i.e., classes that use APIs 2 of resources (resource-related classes)
and classes that do not use such APIs (general classes). Third, we
execute the test suites for each mutant and collect code coverage
metrics. We then investigate the sensitivity of SBFL when there
are variations in resource settings, a known source of application
failures as demonstrated in previous studies [26, 29, 43]. Finally,
we analyse the test reports to calculate the Ochiai coefficient for
each application aiming to locate the faulty code. Our analysis is
performed at the method-level. Therefore, SBFL reports the suspi-
ciousness score for the methods.

Our results indicate that SBFL is able to rank more than 75%
of the faulty methods for 6 applications. However, there is no evi-
dence of a difference in the ranking coefficient between faults in
resource-related classes and faults in general classes. Regarding the
sensitivity of SBFL to variations in resource settings, we found a
major influence of resource settings on the suspiciousness score.

1support.google.com/android/answer/9083864?hl=en
2LocationManager (https://developer.android.com/reference/android/location/Locat
ionManager) is an example of API for location resources

That is, for the same failure (i.e., mutant), the ranking of suspicious
methods varies depending on the combination of enabled resources.

The remainder of this paper is organized as follows. Section 2
presents background information on spectrum-based fault localiza-
tion, mutation testing, and resource interactions in mobile applica-
tions. Section 3 describes the study design. Section 4 discusses the
results of our empirical study. Section 5 presents discussions about
the results. Section 6 describes the threats to validity of this work.
Section 7 presents some related work. Finally, Section 8 concludes
this study and shows directions for future work.

2 BACKGROUND
In this section, we present an overview of concepts of Spectrum-
based fault localization (Section 2.1), mutation testing (Section 2.2),
and resource interactions in mobile applications (Section 2.3).

2.1 Spectrum-based fault localization
SBFL is a technique based on the analysis of the program spectra or
coverage [1], i.e., the program elements covered during a test execu-
tion [18]. These elements can be of different granularity level, e.g.,
statements, blocks, predicates, methods, etc. We focus on method-
level fault localization in this paper. Many SBFL techniques use
ranking metrics to associate a suspiciousness score to the program
elements. These techniques produce as output a list of elements
ranked in descending order of suspiciousness [11].

The metrics used to calculate the suspiciousness score are the
major concern for the design of a SBFL technique. Several metrics
have been proposed to indicate faulty elements [19]. Tarantula[21]
was the first metric proposed exclusively for fault localization. The
Ochiai [2] coefficient was adapted from the Molecular Biology.
Often, the metrics are defined in terms of four values collected of
the execution of the tests [57]:

• 𝑒𝑓 : number of failed tests that execute the program element.
• 𝑒𝑝 : number of passed tests that execute the program element.
• 𝑛𝑓 : number of failed tests that do not execute the program
element.

• 𝑛𝑝 : number of passed tests that do not execute the program
element.

For example, Ochiai uses the following formula for calculating
the suspiciousness of a program element:

𝑂𝑐ℎ𝑖𝑎𝑖 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡) =
𝑒𝑓√︃

(𝑒𝑓 + 𝑛𝑓) ∗ (𝑒𝑓 + 𝑒𝑝)
(1)

Figure 1 presents a code snippet of the signatures of some meth-
ods implemented by the GPSLogger class of OSMTracker 3, to il-
lustrate the use of the Ochiai coefficient for SBFL. This applica-
tion is a trip tracker that works with data from GPS and updates
the location at regular intervals, defined by gpsLoggingInterval.
onLocationChanged is a faulty method, whose signature is defined
in the LocationListener interface 4 of the Android Location API.
At the top, ten test cases (t1 to t10) are presented. For each row,
a • is used to indicate that the method is covered by the test case.
At the bottom, we present the information showing whether the

3https://github.com/labexp/osmtracker-android
4https://developer.android.com/reference/android/location/LocationListener

support.google.com/android/answer/9083864?hl=en
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/location/LocationManager
https://github.com/labexp/osmtracker-android
https://developer.android.com/reference/android/location/LocationListener

Applying Spectrum-Based Fault Localization to Android Applications SBES 2023, September 25–29, 2023, Campo Grande, Brazil

test case passed or failed. The last column indicates the values of
the Ochiai coefficient. Test cases 1, 3, 4, and 7 have failures. The
Ochiai coefficient calculated for the onLocationChanged method
is 1.00. Intuitively, the coefficient for this method is high because it
is more covered by failed tests than by passed tests. We can observe
that SBFL encourages the developer to inspect the most suspicious
method first. A faulty method cannot be ranked if the values 𝑒𝑓
and 𝑛𝑓 are both zero.

2.2 Mutation testing
Mutation analysis is the process of introducing syntactic variations
in a program aiming to produce program variants (mutants), i.e.,
generating artificial faults [34]. Mutation testing refers to the use
of mutation analysis in order to assess the quality of a test suite.
When a test case shows the behavior of a mutant to be different
from that of the original program, the mutant is said to have been
“killed” or “detected” [34]. Otherwise, the mutant is said to be “live”.
During this analysis, we measure the number of mutants that are
killed and calculates the ratio of those over the total number of
mutants. This ratio is called mutation score [24].

The syntactic variations of mutation analysis is performed by
means of “mutation operators” [34]. A basic set of mutant operators,
usually considered as a minimum standard for mutation testing
[24] is the five-operator set proposed for the Mothra mutation
system [30]. This set includes the Relational Operator Replacement
(ROR), Logical Connector Replacement (LCR), Arithmetic Operator
Replacement (AOR), Absolute Value Insertion (ABS), and Unary
Operator Insertion (UOI) operators. For example, let’s consider
the snippet of the onLocationChanged method in Figure 2. This
method receives a Location object as an argument and updates the
location in line 12. A time stamp defined by lastGPSTimestamp
is maintained to control the location update (line 11). We use the
ROR operator for mutating the relational operator of line 3 and
generate 5 mutants (lines 5-9) 5: 𝑒𝑥𝑝𝑟1 <= 𝑒𝑥𝑝𝑟2, 𝑒𝑥𝑝𝑟1 > 𝑒𝑥𝑝𝑟2,
𝑒𝑥𝑝𝑟1 >= 𝑒𝑥𝑝𝑟2, 𝑒𝑥𝑝𝑟1 == 𝑒𝑥𝑝𝑟2, and 𝑒𝑥𝑝𝑟1 != 𝑒𝑥𝑝𝑟2.

Recent studies [13, 38, 41] have presented specific approaches for
themutation testing ofmobile applications. For example, specialized
mutation operators have been proposed from the taxonomy of
real faults of Android applications [13]. Moreover, cost reduction
techniques for the mutation testing of Android applications were
catalogued as a set of good practices [38].

2.3 Resource interactions in mobile applications
Resource interaction failures have only been recently explored in
mobile applications testing [26, 29, 43]. These failures occur when
resources affect the behavior of other resources, similarly to the
feature interaction problem in configurable software systems [5]
and telecommunication systems [7]. An example of resource inter-
action failure occurs for Wikimedia Commons app [43]. Figure 3
presents a code snippet involved in a failure described in an issue 6.
The Android platform uses the GPS or the network (Wi-Fi/Mobile
data) to determine the device location. This application fails if both
GPS and the network are disabled. The failure is caused by calling

5𝑒𝑥𝑝𝑟1 replaces 𝑙𝑎𝑠𝑡𝐺𝑃𝑆𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑔𝑝𝑠𝐿𝑜𝑔𝑔𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 𝑒𝑥𝑝𝑟2 replaces
System.currentTimeMillis()
6https://github.com/commons-app/apps-android-commons/issues/1735

getLastKnownLocation to get the current location over the net-
work (line 3). However, this call returns a null value, which is later
used to store the location-based values when constructing an object
(line 5). As a result, the application crashes due to a NullPoint-
erException. The issue was closed with a proper correction 7.

The high number of input combinations is a challenging aspect
for testing software systems in general, since the effort of the ex-
haustive testing is generally prohibitive. Particularly, it is also the
case of configurable systems [4, 9, 14] in which all tests must be ex-
ecuted with several configurations. Our previous work [29] named
a input combination as a setting, i.e. a set of resources whose states
(enabled or disabled) are previously defined. For instance, our pre-
vious study [29] considered a set of 14 common resources: Auto
Rotate, Battery Saver, Bluetooth, Camera, Do Not Disturb, Lo-
cation, Mobile Data, Wi-Fi, Accelerometer, Gyroscope, Light,
Magnetometer, Orientation, and Proximity.

In this study, we evaluate the sensitivity of SBFL to variations in
resource settings considering the same set of resources. That is, we
investigate if SBFL is able to detect variations of combinations of
resources, allowing us to locate the faulty code behind the resource
failures.

3 STUDY DESIGN
This section presents the experimental design of our study. Section
3.1 shows the research questions and Section 3.2 delineates each
phase of the study.

3.1 Research Questions
The goal of this study is to evaluate the use of SBFL to locate
faults in Android applications and verify the sensitivity to resource
interactions. To achieve this goal, we address the following research
questions:
RQ1: To what extent SBFL can be used for mobile applications?
RQ2: Is there a difference in the ranking coefficient for faults in

resource-related classes and faults in general classes?
RQ3: How sensitive is SBFL to variations in resource settings?
The first research question can be answered by applying the SBFL

and measuring the suspiciousness score using the Ochiai coefficient.
We use faults seeded by mutation operators to control the fault
localization. To answer the second research question, the faults
are seeded in two groups of classes, resource-related classes and
general classes. The resource-related classes are identified based on
the analysis of the imported packages [31]. For the third research
question, we compare the suspiciousness scores in the context of
the variation of resource settings.

3.2 Study Steps
Figure 4 depicts an overview of the steps of the study. First, we
select the first application set to answer RQ1 and RQ2 (Step 1). These
applications must be implemented in Java due to the constraints of
the mutants generator tool used. From the first application set, we
select the second application set to answer RQ3 and instrumented
the test suites to control the resources (Step 2). These applications
must have failures occurring in three executions for the selection of
7https://github.com/commons-app/apps-android-commons/pull/1791

https://github.com/commons-app/apps-android-commons/issues/1735
https://github.com/commons-app/apps-android-commons/pull/1791

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Marinho, et al.

Figure 1: Example of Ochiai coefficient.

1 void onLocat ionChanged (Lo c a t i on l o c a t i o n) {
2 . . .
3 i f ((las tGPSTimestamp + gp s L o g g i n g I n t e r v a l) < System . c u r r e n t _T imeM i l l i s ()) {
4
5 / / mut1 : i f ((l a s tGPST imes tamp + g p s L o g g i n g I n t e r v a l) <= Sys tem . c u r r e n t _ T im eM i l l i s ())
6 / / mut2 : i f ((l a s tGPST imes tamp + g p s L o g g i n g I n t e r v a l) > Sys t em . c u r r e n t _ T im eM i l l i s ())
7 / / mut3 : i f ((l a s tGPST imes tamp + g p s L o g g i n g I n t e r v a l) >= Sys tem . c u r r e n t _ T im eM i l l i s ())
8 / / mut4 : i f ((l a s tGPST imes tamp + g p s L o g g i n g I n t e r v a l) == Sys tem . c u r r e n t _ T im eM i l l i s ())
9 / / mut5 : i f ((l a s tGPST imes tamp + g p s L o g g i n g I n t e r v a l) ! = Sys t em . c u r r e n t _ T im eM i l l i s ())
10
11 las tGPSTimestamp = System . c u r r e n t _T imeM i l l i s () ;
12 l a s t L o c a t i o n = l o c a t i o n ;
13 i f (i s T r a c k i n g) { . . . }
14 }
15 }

Figure 2: Code Snippet of the onLocationChangedmethod of the GPSLogger class.

1 Loc a t i on l a s tKL = loca t i onManage r .
ge tLas tKnownLoca t ion (Locat ionManager .
GPS_PROVIDER) ;

2 i f (l a s tKL == null) {
3 l a s tKL = loca t i onManage r .

ge tLas tKnownLoca t ion (Locat ionManager .
NETWORK_PROVIDER) ;

4 }
5 return LatLng . from (l a s tKL) ; / / An o b j e c t i s

c o n s t r u c t e d from th e l a t i t u d e and
l o n g i t u d e c o o r d i n a t e s

Figure 3: Code Snippet from the Wikimedia Commons An-
droid app.

the settings, since other studies [29] showed that this number of test
executions was sufficient to detect flaky tests. The first application
set was used to generate mutants (Step 3). For each mutant of
the first application set, we execute the test suites (Step 4). This
phase also includes the execution of the test suites of the second

application set. Finally, we analyse the recorded test reports to
calculate the Ochiai coefficient (Step 5). In the following sections,
we detail each step.

3.3 Application Selection
Based on our previous work [29], we randomly selected 8 appli-
cations that meet the following criterion: implemented in Java
and with test code size greater than 500 LOC. Table 1 depicts an
overview of the selected applications. These applications are from
different categories with a large variation of size (from 14,499 LOC
to 347,897 LOC), test code size (from 525 LOC to 3,674 LOC), and
test cases (from 4 to 164). We can observe a relative low instruction
coverage of the test suites (from 2% to 51%). The column “Resources”
presents resources declared in the Manifest file 8 that are used for
the application selection. Some resources are not declared since
they are not directly used by the application (for instance, Auto
Rotate and Battery Saver). Other resources do not demand a
uses-permission tag and may not be explicitly required by the
developer with a uses-feature tag (for instance, Accelerometer

8https://developer.android.com/guide/topics/manifest/manifest-intro

https://developer.android.com/guide/topics/manifest/manifest-intro

Applying Spectrum-Based Fault Localization to Android Applications SBES 2023, September 25–29, 2023, Campo Grande, Brazil

!"#$%%&'()*'+,#

-.&.(*'+,#/01!#2#0134

3"#56*),*7#

8.,.9)*'+,

:"#;.7*#-6'*.#

<=.(6*'+,

>"#?+.@('.,*#

?)&(6&)*'+,

A"#;.7*#-6'*.#

<=*.,7'+,#/01A4

Selected

Applications

Figure 4: The steps of the study.

and Gyroscope). In this case, other approaches for code analysis
could be used for identifying additional resources.

3.4 Mutants Generation
We were not able to find specific mutation tools or operators for re-
source interaction failures. Therefore, we decided to use a generator
prototype tool [12] that implements four of the five operators of the
Mothra mutation system [30]. This tool is able to generate mutants
for Java code using the set of three mutants operators shown in
Table 2. We opt for this tool since it requires less effort for setup
execution and log generation and makes it simple to control the
generation and execution of mutants.

These mutation operators (AOR, ROR, and LCR) are a subset
of the five representative ones [30]. They act on binary expres-
sions and replace the language operator (arithmetic, relational, or
logical) with other syntactically similar operators. Although the mu-
tation operator SBR (Statement Block Removal) was implemented
in the used tool [12], we do not use this operator because SBFL
techniques have limitations in locating faults related to missing
code [40]. These mutation operators are capable of of reproduc-
ing faults related to resource interactions in mobile applications
because we generate mutants for resource related classes. This strat-
egy allows the modification of the code related to the resource, as
seen in the example of Figure 2 in a similar way to the mutation
generation strategies in other studies [14].

We generate all mutants to each target application based on
the selected operators, since the tool uses the concept of metamu-
tant [46] to encode all mutants and the original source code into
one application. In this way, the compilation and loading time is
reduced, because all mutants can be enabled/disabled at runtime.
Thereafter, we conducted a previous analysis to identify mutants
covered by at least one test case.

The number of mutants generated is constrained by the SBFL
approach, where each test case is executed individually, increasing
the testing effort. We attempt to select 20 mutants (10 mutants for
resource-related classes and 10 mutants for general classes) in each
target application. The number of mutants for each application can
be found in Table 3. However, we could not generate an uniform
number of mutants for some applications due to a lack of mutation
points. The mutants were randomly selected from the mutation
operators set (AOR, ROR, and LCR). We restricted our study to 20
mutants due to experimental time constraints.

As we can notice, we are not able to seed all mutants for resource-
related classes for Ground and Threema. For Ground, we only iden-
tify 5 mutants for this kind of class. A possible reason for Threema

is the low coverage of the test suite (2% in Table 1), although this
application has a large number of resource-related classes.

3.5 Test Suite Extension
Similar to our previous work [29], we instrumented code aiming to
control 14 common resources of the Android Platform: Auto Ro-
tate, Battery Saver, Bluetooth, Camera, Do Not Disturb, Lo-
cation, Mobile Data, Wi-Fi, Accelerometer, Gyroscope, Light,
Magnetometer, Orientation, and Proximity. The instrumenta-
tion is based on Android instrumented tests, i.e., a type of functional
test 9. They execute on devices or emulators and can interact with
Android framework APIs.

Each class of the test suites is extended with the instrumenta-
tion, allowing the control of specific contextual information of the
resource states. The control of resources is based on settings. A
setting is defined as a 14-tuple of pairs (resource, state) where
state can be True or False depending on whether the resource
is enabled or disabled.

3.6 Test Suite Execution
For each mutant of the first set of applications and the applications
of the second set, we execute the test suites with the coverage
reports enabled. We used a Xiaomi Pocophone F1 with 6 GB RAM,
running Android 10. Since the calculation of the coefficient is based
on the output of each test case, we execute test cases separately.

For illustrating the experimental effort, we collect a sample of the
approximate execution time for all 20 mutants of each application in
“Execution Time” column of Table 1. The CPU time was randomly
sampled, since from our observation, we could not verify a great
variation of time in the execution of the mutants. We can see that
the execution time varies between 1h45m (OpenScale) to 1d3h
(WordPress).

3.7 Coefficient Calculation
We analyzed test reports to identify failed test cases and the cover-
age reports to get the coverage information. In order to decrease
the complexity of the analysis, we use the method coverage data
for calculating the Ochiai coefficient of each method in target ap-
plications.

4 RESULTS
This section presents the study results and discusses them focusing
on providing answers to the research questions. Section 4.1 provides

9https://developer.android.com/training/testing/instrumented-tests

https://developer.android.com/training/testing/instrumented-tests

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Marinho, et al.

Table 1: Characteristics of the Selected Applications.

Application Description Category LOC Test LOC Test cases Coverage (%) Execution Time Resources

AnkiDroid [3] A flashcard-based
study aid

Education 158,607 2,770 164 17 ∼15h00m Camera, Mobile Data,
Wi-Fi

Ground [17] A map-first data
collection platform

Productivity 19,906 525 4 17 ∼3h40m Camera, Mobile Data,
Location, Wi-Fi

OpenScale [32] A weight and body
metrics tracker

Health, Fitness 27,781 1,451 14 33 ∼1h45m Bluetooth, Location

OwnTracks [33] A location tracker Travel, Local 14,499 889 27 51 ∼4h15m Location, Mobile Data,
Wi-Fi

PocketHub [37] An application for
managing GitHub
repositories

Productivity 29,001 1,663 107 13 ∼8h15m Mobile Data, Wi-Fi

Radio-Droid [39] A radio streaming
application

Music, Audio 22,815 1,735 23 28 ∼2h50m Bluetooth, Mobile Data,
Wi-Fi

Threema [44] An instant message
application

Communication 238,045 1,931 54 2 ∼8h10m
Bluetooth, Camera,
Location, Mobile Data,
Wi-Fi

WordPress [53] A content management
application

Productivity 347,897 3,674 115 19 ∼1d3h Camera, Mobile Data,
Wi-Fi

Table 2: Mutation Operators.

Mutation operator Original Mutations

AOR Arithmetic Operator
Replacement a - b a + b

a - b
a * b
a % b

ROR Relational Operator
Replacement a <= b

a >b
a == b
a <b

a >= b
a != b

LCR Logical Connector
Replacement a || b a && b

Table 3: Mutants Generated for each Application.

Application Resource-Related
Classes

General Classes

AnkiDroid 10 10
Ground 5 15
OpenScale 10 10
OwnTracks 10 10
PocketHub 10 10
Radio-Droid 10 10
Threema 0 20
WordPress 10 10

the answer to RQ1, Section 4.2 presents the answer to RQ2, and
Section 4.3 provides the answer to RQ3.

4.1 Use of SBFL for Mobile Applications (RQ1)
Table 4 presents an overview of the results of the executions with
the total rank in descending order. The column “DM” (Dead Mu-
tants) refers to the amount of mutants detected by the test suite. The
column “MS” (Mutation Score) exhibits the mutation score consider-
ing the total of mutants generated (Table 3). We calculate the Ochiai
coefficients and the ranking position according to the procedures

Table 4: Overview of the Results.

Application DM MS Ranking of Mutants
Rank <= 10 Rank > 10 Total

Threema 18 0.90 18(100%) 0(0%) 18(100%)
PocketHub 9 0.45 9(100%) 0(0%) 9(100%)
OpenScale 7 0.35 7(100%) 0(0%) 7(100%)
Ground 1 0.05 1(100%) 0(0%) 1(100%)
Radio-Droid 4 0.20 2(50%) 1(25%) 3(75%)
AnkiDroid 20 1.00 6(30%) 4(20%) 10(50%)
WordPress 12 0.60 4(34%) 1(8%) 5(42%)
OwnTracks 8 0.40 3(37%) 0(0%) 3(37%)

presented in Section 2.1. The columns “Rank <= 10” and “Rank > 10”
show the amount of faulty methods ranked by Ochiai within top-10
positions and positions greater than 10, respectively. The column
“Total” indicates the total of dead mutants that were ranked by the
suspiciousness score (Ochiai). That is, this last column is the sum
of the “Rank <= 10” and “Rank > 10” columns.

The amount of dead mutants and the mutation score are related
to the quality of the test suites, generally assessed by some code
coverage criteria [16]. We can note that AnkiDroid, Threema, and
WordPress have mutation scores greater than 0.60 while the number
of test cases oscillated between 54 and 164 (Table 1). However, their
code coverage is between 2% and 19%. According to the ranked
dead mutants, the SBFL is able to rank more than 75% of the dead
mutants for 6 applications. A faulty method could not be ranked if
there is no failed test case for it.

4.2 Coefficients in Resource-Related Classes
and in General Classes (RQ2)

We analyse the Ochiai coefficients for resource-related classes
(Group 1) and general classes (Group 2). Figure 5 shows the box
plots of the coefficients. The horizontal axis presents the groups,

Applying Spectrum-Based Fault Localization to Android Applications SBES 2023, September 25–29, 2023, Campo Grande, Brazil

Figure 5: Ochiai coefficients for the groups of classes.

while the vertical axis presents the Ochiai coefficients. We can see
that the variance of Group 2 is larger than the variance of Group 1.

To answer RQ2, we checkwhether the coefficients of Group 1 and
Group 2 follow a normal distribution. First, we create a Quantile-
Quantile (QQ) plot of the data of each group. Figure 6 depicts the
QQ plots for Group 1 and Group 2.

Aswe can see, the points in both groups do not fall approximately
on the diagonal straight line, indicating that our data do not follow
a normal distribution. Therefore, we perform a nonparametric test
using the Mann-Whitney U test (also known as the Mann-Whitney
Wilcoxon test or the Wilcoxon Rank Sum test). For this test, we
defined the following null and alternative hypotheses.

H0: Groups 1 and 2 are from the same population.
H1: Groups 1 and 2 are not from the same population.

We perform the test with a 5% confidence level (i.e., 𝛼 = 0.05)
and obtain a 𝑝-value = 0.99, which does not allow the rejection of
the null hypothesis. In addition, we calculate the 95% confidence
intervals for the means of the two groups. Figure 7 shows the over-
lap of the confidence intervals. Accordingly, we have no evidence
of a difference between the groups.

4.3 Variations in Resource Settings (RQ3)
We select three instrumented applications to compare the suspi-
ciousness score in the context of the variation of resource settings.
The applications were selected considering the fact that they had
failures manifested in three executions, an experimental procedure
for dealing with flaky tests [35]. We randomly select settings for
each application from 214 possibilities that are able to cause fail-
ures in three executions to avoid flaky tests. For instance, SA for
application Owntracks is 〈Wi-Fi, !MobileData, !Location, Bluetooth,
!Camera, !AutoRotate, !BatterySaver, !DoNotDisturb, !Accelerome-
ter, !Gyroscope, Light, Magnetometer, Orientation, Proximity〉, in
which the exclamation mark indicates the disabled resource. We
analyze the pairs of ranks and determine the number of methods
ranked differently and calculate the percentage of difference in
relation to the total number of ranked methods.

Table 5 depicts the applications, the settings id, and the difference
of the rank between pairs of settings. The percentage of difference of
the rank varied between 0% and 98% suggesting an influence of the
resource settings on the suspiciousness score. This can point out to
extensions of the SBFL techniques to rank resource related classes.

(a) QQPlot of Group 1

(b) QQPlot of Group 2

Figure 6: QQ Plots - Groups of classes

Figure 7: Overlap in the 95% confidence intervals.

In this table, the settings id were labelled to make the presentation
more clear.

5 DISCUSSION
We considered 8 applications with test suites created by the de-
velopers. In this way, the ranking of faults depends on the quality
of these test suites. Since we investigate fault localization in the

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Marinho, et al.

Table 5: Difference of the rank

Application Settings id Difference of the rank

OwnTracks SA, SB, SC SA-SC (70%), SB-SC (70%), SA-SB (0%)
PocketHub SA, SB, SC SA-SB(0%), SA-SC(0%), SB-SC(0%)
Threema SA, SB, SC SA-SB (98%), SA-SC (28%), SB-SC (28%)

context of resource-related failures by looking at RQ2 and RQ3
(Section 3.1), our analysis relies on instrumented tests, a type of
functional tests (Section 3.5). Therefore, further efforts need to be
made to extend the detection of these failures to other levels, e.g.,
unit and integration tests.

Aswe answered RQ2, there is no evidence of a difference between
the two groups of classes. Therefore, we believe that the ranking
of SBFL needs to be improved by differentiating the contribution
of the tests to produce a broader program spectra [56]. We can
use coverage metrics of failed tests with respect to the methods
of resource-related classes. For example, following the same logic
as in the study of Zhang et al. [56], a failed test that covers fewer
methods would be more helpful for locating faults than a failed test
that covers more methods.

As we answered RQ3, we found an influence of resource settings
on the suspiciousness score. Using the example of Figure 3 presented
in Section 2.3, we argue that resource-interactions can be caused by
multiple faulty elements as can be seen by the provided correction
of the issue 10. Therefore, similar to the study of Zou et al. [57],
we assume that if a failure is caused by multiple faulty elements,
a fault will be localized by SBLF if one faulty element is localized.
That is, if SBFL indicates one of the faulty elements, the developer
can infer the other faulty elements.

We observed that the SBFL is thus a fault localization technique
that can be applied in the context of mobile application testing
(RQ1). We see two directions to improve the SBFL. The first is to
adapt the ranking metrics to leverage the characteristics of mobile
applications, for instance, exploring coverage metrics that estimate
the use of the resources (e.g., to point out the methods that effec-
tively use the resources). The second is to get feedback from the
ranking process to evolve the test suites. For example, creating more
tests to improve the coverage of the methods of resource-related
classes.

The interplay of software testing and debugging is a well-known
demand for software quality assurance [8]. Wang et al. [48] empha-
sized the rule of test artifacts as a support mechanism for debugging.
In addition, the adoption of the automation of mobile applications
testing by developers is influenced by the generation of test cases
that improve debugging and traceability between test cases and
features [25].

As we discussed in Section 2.3, resource-interaction failures have
only recently been explored in mobile applications testing. The
characterization of the faults behind these failures is an identified
demand [29]. In this way, an improved SBFL approach focusing on
these faults could be integrated into a toolset to promote quality-
related development activities.

10https://github.com/commons-app/apps-android-commons/pull/1791

6 THREATS TO VALIDITY
We carefully designed and conducted our study. Nevertheless, some
threats to validity may have harmed our study results and discus-
sions. We discuss below some major threats and their respective
treatments. We divided into construct, internal, external, and con-
clusion, well-known categories of validity threats [50]

Construct validity. In our study, the first threat to construct
validity is related to the choice of the subject applications and
metrics. We opt to select 8 applications to favor external validity
as we discuss bellow. The use of Ochiai coefficient for measuring
the suspiciousness score may not properly capture how SBFL per-
form in mobile applications. However, we believe that the Ochiai
have promise results since it is among the metrics with the best
performance [36, 57].

Another threat concerns the use of artificial faults from a muta-
tion tool. Although some studies have shown limitations in using
artificial defects in experiments comparing SBFL techniques [36],
the use of datasets with real defects also has limitations [56]. Our
study has a different scope because we do not intend to compare
the performance of the SBFL techniques, but rather to look for
evidence of the feasibility of using SBFL in the context of mobile
applications.

Internal validity. We use only three mutation operators. De-
spite the existence of recent studies discussing specialized mutation
operators for mobile applications [13, 41], we believe that the muta-
tion operators used in this study are a representative subset of the
traditional five-operator set [12]. Moreover, traditional operators
are associated with a significant proportion of real-world applica-
tion failures as evidenced by the study of Escobar-Velasquez and
others [13]

External validity.We conducted our study using 8 open-source
Android applications. We believe that these applications are rep-
resentative of the target population for the experimental study,
as they were randomly sampled from GitHub public repositories.
To mitigate the impact of the representativeness of the Android
applications selected for our study, we choose applications from
different categories, sizes, and test suite size (ranging from 525 LOC
to 3,674 LOC). Another threat to our study is the quality of the test
suite for the selected applications. Our entire analysis depends on
the test suite’s ability to detect failures. For instance, the study of
Heiden et al. [19] suggests that the accuracy of SBFL is affected by
the number of failed test cases. To mitigate the effect of an incom-
plete test suite, we limited our analysis to applications with a test
suite of at least 500 LOC. Furthermore, we limited our analysis to
mobile applications developed in Java or mixing Java and Kotlin.
Therefore, we cannot generalize to other programming languages
and frameworks such as Flutter and React Native.

Conclusion validity. These results reflect our perceptions and
interpretations of the metrics collected from the applications after
execution of the testing strategies. All authors participated in data
analysis and discussions of key findings to reduce bias from any one
person’s interpretation. Nevertheless, we believe that one would get
similar results using other metrics and tools that quantify similar
attributes for the same mobile applications.

https://github.com/commons-app/apps-android-commons/pull/1791

Applying Spectrum-Based Fault Localization to Android Applications SBES 2023, September 25–29, 2023, Campo Grande, Brazil

7 RELATEDWORK
Several studies investigate failures in mobile applications on dif-
ferent aspects, such as exception tracking [42], automatic debug-
ging [49], and setting-related defects [29, 43]. However, we in-
vestigated mobile application failures through the SBFL to better
understand resource-related failures in mobile applications.

Su et al. [42] extensively studied to track failures through unique
exceptions from 2,486 open-source and 3,230 commercial Android
applications. Also, they conducted an online survey of 135 profes-
sional application developers to understand how developers handle
exceptions. While they manually investigated failures reported by
unique exceptions, we used SBFL to identify suspicious faulty pro-
gram elements related to a software failure. Through their survey,
they observed that developers use tools for fault detection. However,
they still have many limitations, such as insufficient bug detection.
Our results indicate that SBFL can rank more than 75% of the faulty
code in 6 out of 8 applications. In addition, they demonstrate that
manually tracking failures is a very costly activity. However, with
our exploratory study, it was possible to identify that using SBFL
for mobile applications is a viable and effective strategy.

Win et al. [49] describe that debugging and testing Android appli-
cations is more challenging than traditional Java programs. In order
to reduce costs with testing and debugging Android applications,
their work proposes an automatic debugging technique for Android
applications called "Event-aware Precise Dynamic Slicing" (EPDS).
This technique is based on "dynamic slicing," which is a technique
that reduces the scope of program execution to a relevant subset of
instructions. Their experiment evaluated the performance of EPDS
compared to other techniques for automatically debugging Android
applications. Their results showed that EPDS could significantly
reduce program scope compared to the other techniques, making
it easier for software developers to identify and correct applica-
tion errors. While they are concerned with reducing the program’s
scope, we focus on observing the interactions of resources and
using SBFL. We seek to indicate the part of the code that is more
prone to failure. Furthermore, this indicates that parts are more
prone to failures and thus indicates parts of the code where the
tests should be concentrated. Our results indicate that the SBFL
can perceive resource interaction failures and artificially inserted
failures.

Sun et al. [43] proposes an approach to identify and correct
defects in Android applications related to system settings, they ad-
dressed a problem similar to the one we investigated. In their work,
system settings can include screen orientation, screen brightness,
and system language, among other settings that can be defined by
the user (enabling or disabling) or during the usage of applications.
While in our work, we also use resources such as Wi-Fi, Bluetooth,
and Location. Their work describes an experiment to evaluate the
proposed approach’s effectiveness in identifying defects related to
system settings in Android applications. Their results showed that
the proposed approach could identify several defects not found
by other testing techniques, making it a valuable tool for Android
application developers. In our work, we insert artificial faults and
use instrumentation to activate and deactivate resources through
informed configuration.

Marinho et al. [29] evaluated five sampling strategies in the
context of resource-related failures of mobile applications. They
generated and analyzed settings for the selected sampling testing
strategies: Random, One-Enabled, One-Disabled, Most-Enabled-
Disabled, and Pairwise. They observed that the Random strategy
found better results concerning settings with failures. We also did
a study to understand failures in mobile applications considering
the 14 resources used in their work. In addition, we focused on
analyzing SBFL to better understand resource-related failures in
mobile applications. Finally, they commented on the challenges and
difficulties in testing mobile applications concerning verifying fail-
ures arising from resource interactions. For example, they observed
some challenges: the need for tooling support, the instrumentation
of the test suite, and the time needed to test different settings. In
order to overcome these challenges, we use SBFL as a technique
that can support and reduce testing costs for mobile applications
while considering the resources related to failures.

8 CONCLUSION
In this paper, we evaluated the use of SBFL aiming to locate faults
in 8 Android applications and evaluate the sensitivity to resource
interactions. We used faults seeded from a subset of mutation op-
erators aiming to conduct the experimental study. Moreover, we
used the Ochiai coefficient for calculating the suspiciousness score.

As a result, SBFL is able to rank more than 75% of the faulty code
in 6 out of 8 applications. We found a major influence of resource
settings on the suspiciousness score. That is, for the same failure (i.e.,
mutant), the ranking of suspicious methods varies depending on the
combination of enabled resources (e.g., Wi-Fi and GPS). Therefore,
we believe that SBFL is a promising technique that should be used in
further studies to characterize the faults behind resource interaction
failures.

As future work, we suggest the expansion of the experimental
study to include applications implemented in other languages and
frameworks, such as Kotlin, Flutter and React Native. Moreover,
we can investigate specific mutation operators of mobile applica-
tions [13]. Another direction is the use of fault localization fami-
lies [57] and empirical studies of the SBFL using real faults [36].

AVAILABILITY OF ARTIFACTS
We make our data publicly available for further investigations on a
GitHub repository 11.

ACKNOWLEDGMENTS
This research was partially supported by CNPq (Grant 312920/2021-
0) and FAPEMIG (Grant PPM-00651-17).

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J.C. van Gemund. 2007. On the Accuracy of

Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION). 89–98.

[2] Rui Abreu, P. Zoeteweij, and A. J. C. van Gemund. 2006. An Evaluation of
Similarity Coefficients for Software Fault Localization. In Pacific Rim International
Symposium on Dependable Computing (PRDC). 39–46.

[3] AnkiDroid. Accessed 6-May-2023. Anki flashcards on Android. https://github.c
om/ankidroid/Anki-Android

11https://github.com/sbflappres/sbflappres_int

https://github.com/ankidroid/Anki-Android
https://github.com/ankidroid/Anki-Android
https://github.com/sbflappres/sbflappres_int

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Marinho, et al.

[4] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-oriented software
product Lines. Springer Berlin / Heidelberg.

[5] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. 2013. Exploring
Feature Interactions in the Wild: The New Feature-Interaction Challenge. In
International Workshop on Feature-Oriented Software Development (FOSD) (Indi-
anapolis, Indiana, USA) (FOSD ’13). 1–8.

[6] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2022. Evaluating and
Improving Unified Debugging. IEEE Transactions on Software Engineering 48, 11
(2022), 4692–4716.

[7] T. F. Bowen, FS Dworack, C. Chow, N. Griffeth, G. E Herman, and Y-J Lin. 1989.
The feature interaction problem in telecommunications systems. In International
Conference on Software Engineering for Telecommunication Switching Systems
(SETSS). 59–62.

[8] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella. 2015. Do
Automatically Generated Test Cases Make Debugging Easier? An Experimental
Assessment of Debugging Effectiveness and Efficiency. ACM Transactions on
Software Engineering and Methodology 25, 1, Article 5 (2015), 38 pages.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi. 2007. Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints. In ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA). 129–139.

[10] J. Dąbrowski, E. Letier, A. Perini, and A. Susi. 2022. Analysing app reviews
for Software Engineering: a systematic literature review. Empirical Software
Engineering 27, 43 (2022), 1–63.

[11] H. A. de Souza, D. Mutti, M. L. Chaim, and F. Kon. 2018. Contextualizing spectrum-
based fault localization. Information and Software Technology 94 (2018), 245–261.

[12] J. P. Diniz, C. -P. Wong, C. Kästner, and E. Figueiredo. 2021. Dissecting Strongly
Subsuming Second-Order Mutants. In IEEE International Conference on Software
Testing, Verification, and Validation (ICST). 171–181.

[13] C. Escobar-Velásquez, M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M.
Di Penta, C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. 2020. Enabling
Mutant Generation for Open- and Closed-Source Android Apps. IEEE Transactions
on Software Engineering (TSE) 48, 1 (2020), 186–208.

[14] F. Ferreira, G. Vale, J. P. Diniz, and E. Figueiredo. 2021. Evaluating T-wise testing
strategies in a community-wide dataset of configurable software systems. Journal
of Systems and Software (JSS) (2021), 110990.

[15] J. A. Galindo, H. Turner, D. Benavides, and J. White. 2016. Testing variability-
intensive systems using automated analysis: an application to Android. Software
Quality Journal (SQJ) 24 (2016), 365–405.

[16] R. Gopinath, C. Jensen, and A. Groce. 2014. Code Coverage for Suite Evaluation
by Developers. In IEEE/ACM International Conference on Software Engineering
(ICSE). 72–82.

[17] Ground. Accessed 6-May-2023. Ground mobile data collection app for Android.
https://github.com/google/ground-android

[18] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. 1998. An Empirical
Investigation of Program Spectra. SIGPLAN Notices 33, 7 (1998), 83–90.

[19] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. van Hoorn, A. Filieri, and D. Lo. 2019.
An evaluation of pure spectrum-based fault localization techniques for large-scale
software systems. Software: Practice and Experience 49, 8 (2019), 1197–1224.

[20] K. Holl and F. Elberzhager. 2019. Chapter One - Mobile Application Quality
Assurance. Advances in Computers, Vol. 112. Elsevier, 1–77.

[21] J. A. Jones, M. Jean Harrold, and J. Stasko. 2002. Visualization of Test Information
to Assist Fault Localization. In IEEE/ACM International Conference on Software
Engineering (ICSE). 467–477.

[22] M. C. Júnior, D. Amalfitano, L. Garcés, A. R. Fasolino, Stevão A. Andrade, and M.
Delamaro. 2022. Dynamic Testing Techniques of Non-functional Requirements
in Mobile Apps: A Systematic Mapping Study. ACM Computing Surveys (CSUR)
54, 10s (2022), 1–38.

[23] P. Kong, L. Li, J. Gao, T. Riom, Y. Zhao, T. F. Bissyandé, and J. Klein. 2021. AN-
CHOR: locating Android framework-specific crashing faults. Automated Software
Engineering 28, 2 (2021), 10.

[24] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. Le Le Traon, and A. Ventresque.
2017. Assessing and Improving the Mutation Testing Practice of PIT. In IEEE
International Conference on Software Testing, Verification, and Validation (ICST).
430–435.

[25] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk. 2017.
How do Developers Test Android Applications?. In IEEE International Conference
on Software Maintenance and Evolution (ICSME). 613–622.

[26] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. 2019. Preference-wise testing for
Android applications. In ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
268–278.

[27] C. Luo, J. Goncalves, E. Velloso, and V. Kostakos. 2020. A survey of context simu-
lation for testing mobile context-aware applications. ACM Computing Surveys
(CSUR) 53, 1 (2020), 1–39.

[28] P. Machado, J. Campos, and R. Abreu. 2013. MZoltar: Automatic Debugging
of Android Applications. In International Workshop on Software Development
Lifecycle for Mobile (DeMobile). 9–16.

[29] E. H. Marinho, F. Ferreira, J. P. Diniz, and E. Figueiredo. 2023. Evaluating testing
strategies for resource related failures in mobile applications. Software Quality
Journal (2023), 1–27.

[30] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. 1996. An Experimental
Determination of Sufficient Mutant Operators. ACM Transactions on Software
Engineering and Methodology 5, 2 (1996), 99–118.

[31] J. Oliveira, M. Souza, M. Flauzino, R. Durelli, and E. Figueiredo. 2022. Can
Source Code Analysis Indicate Programming Skills? A Survey with Developers.
In International Conference on the Quality of Information and Communications
Technology (QUATIC). 156–171.

[32] Openscale. Accessed 6-May-2023. Open-source weight and body metrics tracker,
with support for Bluetooth scales. https://github.com/oliexdev/openScale

[33] Owntracks. Accessed 6-May-2023. Open-source weight and body metrics tracker,
with support for Bluetooth scales. https://github.com/owntracks/android

[34] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman. 2019.
Mutation Testing Advances: An Analysis and Survey. Advances in Computers,
Vol. 112. Elsevier, 275–378.

[35] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2021. A Survey of Flaky
Tests. ACM Transactions on Software Engineering and Methodology (TOSEM) 31,
1, Article 17 (2021), 74 pages.

[36] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and
B. Keller. 2017. Evaluating and Improving Fault Localization. In IEEE/ACM
International Conference on Software Engineering (ICSE). 609–620.

[37] PocketHub. Accessed 6-May-2023. PocketHub Android App. https://github.com
/pockethub/PocketHub

[38] M. Polo-Usaola and I. Rodríguez-Trujillo. 2021. Analysing the combination of cost
reduction techniques in Android mutation testing. Software Testing, Verification
and Reliability 31, 7 (2021), e1769.

[39] RadioDroid. Accessed 6-May-2023. Radio Browser App. https://github.com/seg
ler-alex/RadioDroid

[40] Q. I. Sarhan and Á. Beszédes. 2022. A Survey of Challenges in Spectrum-Based
Software Fault Localization. IEEE Access 10 (2022), 10618–10639.

[41] H. N. Silva, J. Prado Lima, S. R. Vergilio, and A. T. Endo. 2022. A mapping study
on mutation testing for mobile applications. Software Testing, Verification and
Reliability 32, 8 (2022), e1801.

[42] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su. 2020. Why my app crashes?
Understanding and benchmarking framework-specific exceptions of Android
apps. IEEE Transactions on Software Engineering (TSE) (2020), 1115–1137.

[43] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su. 2021. Understanding
and Finding System Setting-Related Defects in Android Apps. In ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 204–215.

[44] Threema. Accessed 6-May-2023. Threema App for Android. https://github.com
/threema-ch/threema-android

[45] P. Tramontana, D. Amalfitano, N. Amatucci, and A. R. Fasolino. 2019. Automated
functional testing of mobile applications: a systematic mapping study. Software
Quality Journal (SQJ) 27, 1 (2019), 149–201.

[46] R. H. Untch, A. J. Offutt, and M. J. Harrold. 1993. Mutation Analysis Using Mutant
Schemata. In ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 139–148.

[47] I. K. Villanes, A. T Endo, and A. C. Dias-Neto. 2022. A multivocal literature
mapping on mobile compatibility testing. International Journal of Computer
Applications in Technology 69, 2 (2022), 173–192.

[48] Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, and P. Raulamo-jurvanen. 2022.
Improving test automation maturity: A multivocal literature review. Software
Testing, Verification and Reliability 32, 3 (2022), e1804.

[49] H. M. Win, S. H. Tan, and Y. Sui. 2023. Event-aware precise dynamic slicing for
automatic debugging of Android applications. Journal of Systems and Software
(JSS) (2023), 111606.

[50] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. 2012.
Experimentation in Software Engineering. Springer Berlin / Heidelberg.

[51] W. E. Wong, V. Debroy, R. Gao, and Y. Li. 2014. The DStar Method for Effective
Software Fault Localization. IEEE Transactions on Reliability 63, 1 (2014), 290–308.

[52] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software
Fault Localization. IEEE Transactions on Software Engineering 42, 8 (2016), 707–
740.

[53] WordPress. Accessed 6-May-2023. WordPress for Android. https://github.com
/wordpress-mobile/WordPress-Android

[54] A. Zakari, S. P. Lee, K. A. Alam, and R. Ahmad. 2019. Software fault localisation:
a systematic mapping study. IET Software 13, 1 (2019), 60–74.

[55] C. Zamfir and G. Candea. 2010. Execution Synthesis: A Technique for Automated
Software Debugging (EuroSys). In European Conference on Computer Systems.
321–334.

[56] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid. 2021. An
Empirical Study of Boosting Spectrum-Based Fault Localization via PageRank.
IEEE Transactions on Software Engineering 47, 6 (2021), 1089–1113.

[57] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. 2021. An Empirical Study
of Fault Localization Families and Their Combinations. IEEE Transactions on
Software Engineering 47, 2 (2021), 332–347.

https://github.com/google/ground-android
https://github.com/oliexdev/openScale
https://github.com/owntracks/android
https://github.com/pockethub/PocketHub
https://github.com/pockethub/PocketHub
https://github.com/segler-alex/RadioDroid
https://github.com/segler-alex/RadioDroid
https://github.com/threema-ch/threema-android
https://github.com/threema-ch/threema-android
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android

	Abstract
	1 Introduction
	2 Background
	2.1 Spectrum-based fault localization
	2.2 Mutation testing
	2.3 Resource interactions in mobile applications

	3 Study Design
	3.1 Research Questions
	3.2 Study Steps
	3.3 Application Selection
	3.4 Mutants Generation
	3.5 Test Suite Extension
	3.6 Test Suite Execution
	3.7 Coefficient Calculation

	4 Results
	4.1 Use of SBFL for Mobile Applications (RQ1)
	4.2 Coefficients in Resource-Related Classes and in General Classes (RQ2)
	4.3 Variations in Resource Settings (RQ3)

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

