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Abstract—Mutation testing is a fault-based testing criterion
that is used to measure the quality of the test suites of software
systems. Due to its inherent high computational cost, many
studies were published in the last decades aiming at reducing
computational cost and human-effort for the mutation analysis.
One of the most promising areas is searching for Strongly
Subsuming Higher-Order Mutants (SSHOMs), which are rare
and harder to kill than their constituent first-order mutants
(FOMs). Therefore, they are valuable especially because they can
replace their FOMs without loss of effectiveness in the mutation
testing process. One of the explanations for the SSHOMs to be
harder to kill than their constituent FOMs is that the single
faults (mutations) can partially mask one another, so that the
combination of them is harder to detect than any of the individual
faults. However, we did not find in the literature an investigation
of the masking phenomenon. Therefore, the goal of this paper is
to start filling this gap. More specifically, for a mutation to mask
the other one, it is necessary firstly that the execution of a test
case reaches all involved mutations. Therefore, we designed two
complementary studies to accomplish our goal. Study #1 focuses
on searching for Strongly-Subsuming Second-Order Mutants
(SS2OMs) and then analyzes reaching characteristics of their
constituent FOMs. We found that almost half of the SS2OMs
constituent FOMs are not even reaching the other FOM. In
Study #2, we designed a search strategy that considers a second-
order mutant killed only if both of their mutations are reached
by a failing test case execution. This strategy found much more
SS2OMs than in the first study.

Index Terms—mutation testing, higher-order mutants, mutants
reduction, mutants reachability, empirical study

I. INTRODUCTION

Mutation testing [1]–[3] is a testing criterion that requires
tests to reveal specified faults introduced into the program
under test. It is a way to measure the quality of the test
suite for a software system [4]. On the one hand, muta-
tion testing is more reliable and fills more gaps than other
(nonmutation-based) forms of coverage [5]. On the other hand,
it demands high computational cost and has low popularity in
industry [5]. Fortunately, this scenario has been changing in
recent years [5]–[8]. In mutation testing literature, tools and
novel analyses have been proposed, launched, and performed

over the last decades, aiming at reducing the cost of the most
expensive steps of the mutation testing process [9]–[15].

Performing mutation testing consists in systematically gen-
erating slightly modified versions of a program p, called
mutants. Mutation operators embed the modification rules.
Ideally, each mutant is a faulty program and should behave
differently from p for at least one test case; when that happens,
the mutant is said to be killed. Mutants that remain alive after
the test suite execution either require additional tests to be
killed, or are equivalent to the program under test and hence
cannot be killed.

A First-Order Mutant (FOM) is created by inserting a single
change into the program under test [16]. To create a Higher-
Order Mutant (HOM), which simulates more complex faults,
it is necessary to introduce two or more changes into the
program. In other words, a HOM is created by the combination
of two or more FOMs. HOMs have become an object of
interest in the last years mainly after the Harman, Jia and
colleagues’ reports [16]–[19]. Gopinath et al. [20] showed that,
for their setup study, a typical real fault involves about three
to four tokens (changes).

Prior research [21], [22] has shown that HOMs are less
likely to be equivalent to the original program. Besides that,
while it has been shown that the large majority of the HOMs
are killed by any test suite that kills all FOMs [23], [24], some
of them are rare, increase faults subtlety, and are more difficult
to kill than their constituent FOMs. Therefore, such HOMs
are valuable and it is worth to analyze them. Particularly,
a Strongly Subsuming Higher-Order Mutant (SSHOM) is a
HOM that can only be killed by a subset of test cases that kill
all its constituent FOMs [17]. SSHOMs have their importance
once they can reduce test effort, either by replacing their
constituent FOMs in a mutation testing process [13], [17],
[25], [26], or by reducing the number of test cases in a given
test suite [16], [25].

Due to the prohibitive search space for valuable HOMs,
some studies focused on small (or even toy) systems or lower
degrees of HOMs like Second-Order Mutants (2OMs) [27]–



[31]. In this study, we used nine Java systems, varying
from toys to open source, industry accepted projects, and
also focused on Strongly Subsuming Second-Order Mutants
(SS2OMs). We understand that it is worth investigating valu-
able 2OMs since (i) due to the smaller search space when
compared to mutants of higher orders, it is possible to perform
exhaustive searches in specific contexts; and (ii) some studies
showed that valuable HOMs of higher order are formed by
valuable HOMs of lower order. For instance, Omar et al. [24]
observed this phenomenon in Subtle HOMs while Wong et
al. [26] observed it in SSHOMs. Therefore, the SS2OMs we
analysed have potential to form SSHOMs of order higher than
two, which can achieve higher reduction in the number of
mutants.

Initially, we had a specific aim of investigating what makes
the SS2OMs harder to kill than their constituent FOMs.
One argument for this phenomenon is that, when the whole
test suite exercises the FOMs, one interferes with the other
(or, as commonly referred to in the literature, one mutation
partially masks the other one [17], [18], [25]). As a result, it
contributes to an output (or a program state) more difficult to
be distinguished by the current test cases. For a code change
to interfere with another code change, it implies both changes
to be executed in the same run. In our context, if an SS2OM is
harder to kill than its constituent FOMs because its mutations
partially mask each other, it is expected that both mutations
are reached by the execution of at least one test case of
the SS2OM killing tests; otherwise, only the effect of one
mutation execution holds. Prior to understand if and how the
SS2OMs’ constituent FOMs mask each other, we believe that
it is necessary to verify if both mutations are actually being
reached by the test cases in the SS2OMs killing tests.

Based on that, the main goal of this paper is to inves-
tigate the FOMs reaching. That is, whether each SS2OM’s
constituent FOM is indeed reached by the execution of the
test cases of the SS2OM’s killing tests. For this purpose, we
designed two complementary studies to support our investi-
gation. Study #1 was designed to investigate the proportion
of SS2OMs so that their killing tests reach both of their
mutations. We ran an exhaustive search for SS2OMs in our
subject systems. The main finding for Study #1 is that, for
almost half of the SS2OMs, only one of their constituent
FOMs is in fact executed by the SS2OMs’ killing tests,
while the other one is not even reached. Consequently, such
mutations cannot mask each other. This and other findings
motivated us to perform Study #2, which comprises a novel
search strategy for SS2OMs that considers a 2OM into account
if, and only if, a test case execution reaches both of their
mutations. In other words, if a 2OM is killed by a test case
that reaches both of their mutations, the test case is included
in the 2OMs’ killing tests set. The search performed in the
second study found not only the SS2OMs on which one
FOM reaches the other in the previous study, but many more
distinct SS2OMs. Given the two sets of SS2OMs found by
the distinct strategies in both studies, we finally compared the
mutant reduction that both sets of SS2OMs can achieve. The

reduction was measured in terms of the percentage of FOMs
the SS2OMs can replace. Our results show that the SS2OMs
found in the second study have the potential to achieve a higher
reduction.

In summary, the contributions of this work are:
• we found that the constituent FOMs of many SS2OMs

are not masking each other. Even so, such SS2OMs can
still replace their FOMs to reduce the number of mutants
in a mutation testing process (or mutation analysis);

• a novel search strategy for SS2OMs that can be extended
for orders higher than two;

Hence, we believe that finding as many properties and
characteristics of SS2OMs as possible can be useful to identify
strongly subsuming mutants of third-, fourth-, and even higher-
orders in general, which may potentially produce higher cost
reductions for mutation testing.

The remainder of this paper is structured as follows. Sec-
tion II presents essential background that includes a formal-
ization of SS2OMs and a motivating example. Section III
shows the subject systems, mutation operators, and mutation
generation strategy used in both studies. Sections IV and V
present Studies #1 and Study #2, respectively. Section VI
discusses some findings and their implications. Section VII
lists some limitations and threats to validity. Section VIII
compares our studies to related work, and, finally, Section IX
concludes this paper and points out to possible future work.

II. BACKGROUND

In this section, we describe the fundamental concepts nec-
essary to understand the two studies reported in this paper
(Sections II-A and II-B, together with a motivating example
(Section II-C).

A. Strongly Subsuming Second-Order Mutants

A First-Order Mutant (FOM) is created by inserting a
single syntactic change into the program under testing [16],
whereas a Second-Order Mutant (2OM) is created with the
introduction of two changes in the same mutant (mutated
program). The set of 2OMs grows quadratically with the size
of the set of FOMs from which they are combined. However,
the problem becomes more complicated when more than two
FOMs are combined to compose the set of HOMs. In this case,
the problem becomes exponential, requiring an innovative
technique to deal with the combinatorial explosion. Therefore,
we focused this study on an exhaustive combination of FOMs
to generate all possible 2OMs.

Given their underlying nature, HOMs are more likely to be
killed than FOMs; this is a property discussed as the coupling
effect hypothesis [23]. However, a small fraction of HOMs
represents subtler faults, making them harder to be killed
than their constituent FOMs. Jia and Harman [17] named
such HOMs as strongly subsuming higher-order mutants
(SSHOMs) and argue that they can replace their constituent
FOMs without loss of test effectiveness (the mutants remain
failing on the test suite) but with increased test efficiency
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(fewer mutants to be executed). Therefore, SSHOMs keep
effectiveness and improve efficiency.

Based on a formal definition of an SSHOM as a HOM that
can only be killed by a subset of the intersection of the test
cases that kill all its constituent FOMs [17], we simplified the
formalism from SSHOMs to SS2OMs as follows. Let s be
a 2OM composed of FOMs f1 and f2, Ts be the set of test
cases that kills s, and Ti be the set of test cases that kills
the FOM fi. Then, s is an SS2OM if, and only if, Ts ̸= ∅
and Ts ⊆ T1 ∩ T2. It is possible to find examples of SS2OMs
in the research reported by Wong et al. [32] (figure 1), Diniz
et al. [31] (listing 1), and Jia and Harman [17] (table 4 and
program 5).

B. Mutants Reduction via SS2OMs

From the literature, it is known that SSHOMs are valuable
so they can provide a reduction in the number of mutants
to be executed in a mutation testing process. This reduc-
tion is achieved by replacing the FOMs they subsume by
the SSHOMs themselves. There are some examples in the
literature on how to calculate such reduction, as presented in
previous studies [25], [31]. Due to the similarity of the studies,
i.e., SSHOMs being limited to the second order, and believing
in more realistic results, we follow similar steps of previous
work [31], as follows:

1) Split the FOMs into subsumed (the ones subsumed by,
at least, one SS2OM) and non-subsumed;

2) Reduce the number of SS2OMs. This step is necessary
because the number of SS2OMs are (much) larger than
the number of FOMs they subsume. Choosing only the
smallest fraction of SS2OMs, which are sufficient to re-
place all the subsumed FOMs, is modeled as an instance
of the Minimum Set Cover Problem. The solution of this
optimization problem is the set named SS2OMsRed.

3) Obtain the overall reduced set of mutants as non-
subsumed ∪ SS2OMsRed;

4) Compute the reduction as the percentage of the size
of the final resulting set of mutants in relation to the
original number of FOMs.

C. Motivating Example

Listing 1 shows (i) the original source code of the
classify method of the Triangle program; (ii) three out of
many possible mutations represented as comments at lines 6,
16 and 18, named FOM1, FOM2 and FOM3, respectively; and
(iii) two of the original test cases and, as comments, the FOMs
they kill. We show only these test cases because, in the whole
Triangle test suite, testIsosceles1 is the unique test case
that kills FOM1 and FOM3, while testIsosceles1 and
testIsosceles2 are the only test cases that kill FOM2.
Therefore, the killing tests (KTs) of these three FOMs are:
• KTFOM1 = {testIsosceles1}
• KTFOM2 = {testIsosceles1, testIsosceles2}
• KTFOM3 = {testIsosceles1}

In this example, we focused on two 2OMs: {FOM1,FOM2}
and {FOM1,FOM3}. By running the test suite against

Listing 1. Triangle
1public Type classify(int a, int b, int c) {
2if (a <= 0 || b <= 0 || c <= 0)
3return INVALID;
4int trian = 0;
5if (a == b)
6trian = trian + 1; //FOM1: trian - 1
7if (a == c)
8trian = trian + 2;
9if (b == c)
10trian = trian + 3;
11if (trian == 0)
12if (a + b < c || a + c < b || b + c < a)
13return INVALID;
14else
15return SCALENE;
16if (trian > 3) //FOM2: trian != 3
17return EQUILATERAL;
18if (trian == 1 && a + b > c) //FOM3: a % b
19return ISOSCELES;
20else if (trian == 2 && a + c > b)
21return ISOSCELES;
22else if (trian == 3 && b + c > a)
23return ISOSCELES;
24return INVALID;
25}
26
27// test cases
28void testIsosceles1() { //kills FOM1,FOM2,FOM3
29assertEquals(ISOSCELES, classify(2, 2, 3));
30}
31void testIsosceles2() { //kills FOM2
32assertEquals(ISOSCELES, classify(2, 3, 2));
33}

{FOM1,FOM2}, this 2OM fails on testIsosceles1 and
testIsosceles2. While testIsosceles1 executes the
mutations of both FOMs, testIsosceles2 executes only
the mutation of FOM2, both returning EQUILATERAL instead
of ISOSCELES. By running the Triangle test suite against
{FOM1,FOM3}, the 2OM fails only on testIsosceles1.
By analyzing its trace, after the mutation of FOM1 has been
executed at line 6, the trian variable gets -1, and the
expression mutated by FOM3 is not executed; at the end, the
classify method execution finishes at line 24, returning
INVALID instead of ISOSCELES. Therefore, the killing tests
and classification of the two subject 2OMs are:

• KTFOM1,FOM2 = {testIsosceles1, testIsosceles2} ⇒
not an SS2OM

• KTFOM1,FOM3 = {testIsosceles1} ⇒ SS2OM

Regardless of how many mutations of a HOM are executed,
if a test case fails against it, the mutation testing process or
any search strategy recognizes such HOM as killed. Recall
that, for a HOM to be classified as an SSHOM, it depends on
its killing tests.

One of the main well-established understandings for the
SSHOMs being more difficult to kill than their constituent
FOMs is that such FOMs mask each other. Nonetheless, as
far as we are concerned, there is no study in the literature
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investigating the proportion of SSHOMs whose constituent
FOMs are actually masking each other. Moreover, there is
no search strategy for SSHOMs that proposes to take into
account a HOM only when at least one FOM masks any other
FOM. For such kind of strategy, killing tests clearly change
and, for the same 2OMs above, we get distinct classifications.
Therefore, the killing tests and classification of the two subject
2OMs are:
• KTFOM1,FOM2 = {testIsosceles1} ⇒ SS2OM
• KTFOM1,FOM3 = ∅ ⇒ not an SS2OM

The difference between the SS2OMs killing tests com-
puted from both strategies is that the ones generated by the
second strategy are smaller by one test case. On the one
hand, without testIsosceles2 in the {FOM1,FOM3}
killing tests, it becomes an SS2OM. On the other hand,
without testIsosceles1, {FOM1,FOM3} is no longer an
SS2OM.

III. SETUP FOR BOTH STUDIES

This section describes the common setup for both studies.
Table I presents basic information about the selected Java sys-
tems.1 They are from different domains and Table I shows their
sizes, lines of code, number of test cases, test coverage, and
FOMs we generated. We chose them aiming at a generalized
sample to reflect a piece of the universe of types of systems.

The first two, Vending Machine and Triangle, are small toy
programs explored in prior mutation testing [17], [26], [27],
[31] and configurable systems testing [33] research. Monopoly,
ECal, and Chess are larger systems than the first ones; they are
basically maintained for research purposes and, consequently,
are also used in previous testing-related studies [30], [34].
Finally, four systems are well-established in the industry and
two of them are also present in previous works [26], [31]:
Commons CSV, Commons CLI, Commons Validator (from
Apache ©), and Gson (from Google ©). In both studies, we
used only the original test suite available with each system.

TABLE I
SUBJECT SYSTEMS.

System Version LoC # Classes # Test
cases

% Test
coverage

# FOMs
generated

Vending M Exceptions 155 6 35 55.5 57
Triangle n/a 32 2 12 96.4 138
Monopoly n/a 1,181 40 123 97.4 866
C CSV 1.8 1,880 11 328 92.1 925
C CLI 1.4 2,702 24 318 96.0 1,082
ECal 2003.10 3,626 74 224 78.8 1,207
C Validator 1.6 7,409 70 536 86.2 3,197
Gson 2.9.0 11,036 70 1,089 68.2 3,712
Chess n/a 4,924 38 930 58.4 5,287

We rely on the four mutation operators shown in Table II.
The first three replace binary Java operators like arithmetic,
relational, and logical. The last one removes Java statements.
With respect to the SBR operator, given the if statement

1We choose systems implemented in Java since it is more common in the
mutation testing literature [5] and due to the ease of use of the JavaParser
open source AST generator library necessary to our mutants instrumentation.

Listing 2. Metamutant code snippet.
trian = (READ_MUTANT(4) ? (trian % 1) :

(READ_MUTANT(3) ? (trian \ 1) :
(READ_MUTANT(2) ? (trian * 1) :
(READ_MUTANT(1) ? (trian - 1) :

(trian + 1)))));

on its respective example, the operator is able to generate
two mutations: one by removing the expression statement
“a = -b;”, and another by removing the whole if statement
(which was represented by an empty set).

TABLE II
MUTATION OPERATORS IMPLEMENTED.

Mutation operator Examples in Java
Original Mutations

AOR Arithmetic Operator
Replacement a - b

a + b a * b
a / b a % b

ROR Relational Operator
Replacement a <= b

a >= b a > b
a == b a < b
a != b

LCR Logical Connector
Replacement a || b a && b

SBR Statement Block
Removal

if(a > b){
a = -b;

}

if(a > b){}

∅

In addition, instead of generating one version of each first-
or second-order mutant over a subject system, we generate a
metamutant, i.e., a single variant of the system that encodes all
possible syntactic changes (mutants). This approach is inspired
by Mutant Schemata [35]. For example, when generating all
mutations for the original expression trian + 1 in line 6 of
Listing 1, the resulting source code looks like that shown in
Listing 2.2 The READ_MUTANT method returns whether the
target mutant is enabled or not. As can be seen, the original
expression is also present and is executed only if all four
mutants are disabled.

This technique saves compilation costs because the meta-
mutant needs to be compiled just once. Moreover, mutations
can be enabled/disabled when necessary at runtime. To ensure
schemata to work correctly, we also track information useful to
disregard mutations that cannot be enabled simultaneously. For
instance, in the original expression “c = a + b”, despite of
being possible to create four FOMs while replacing the “+”
arithmetic operator with the four other arithmetic operators,
it is impossible to combine any of those four FOMs into a
HOM.

IV. STUDY #1

While the great majority of HOMs are more likely to be
killed than their constituent FOMs, SSHOMs are rare and
valuable HOMs that are more difficult to be killed [16]–[19].

2The indentation was intentional, just for better code comprehension.
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The most convincing explanation for this phenomenon is that
the SSHOMs’ constituent FOMs are acting in such a way
to partially mask each other. However, previous work [31]
observed that the killing tests of more than 84% of the
SS2OMs found are exactly the same killing tests of their
constituent FOMs. Therefore, we wonder if the SS2OMs’
mutations are actually masking each other or if there may
be situations in which only one FOM is reached by the
killing tests.

To the best of our knowledge, there is no study investigating
the following three situations, from the most specific to the
most general, about SSHOMs: (i) how the mutations mask
each other, (ii) whether the mutations are actually masking
each other, and (iii) whether all the mutations are even being
reached by a given test case that kills an SSHOM. Before being
able to investigate (ii) and to understand (i), it is necessary to
investigate (iii).

After manually inspecting the execution trace of a small
sample of SS2OMs, we found occurrences that only one of
their mutations was indeed executed by some killing tests,
like in the motivating example (Section II-C). To go further in
this analysis and due to search space limitations, we designed
this first study in order to investigate how many test cases that
kill an SS2OM (i.e., the SS2OM’s killing tests) are actually
reaching both mutated parts of its code.

A. Definitions

First of all, we formally define the killing tests of an SS2OM
in terms of its constituent FOMs and the test cases that kill it:

• FOMi: FOM that is part of (or is subsumed by), at least,
one SS2OM;

• SS2OMij : SS2OM formed by (that subsumes) FOMi

and FOMj , i ̸= j;
• tk ∈ KTij : test case k that kills FOMi, FOMj , and

SS2OMij ;
• KTij : killing tests of SS2OMij .
Given the definitions above, we are able to define the reach

function r, which indicates whether the test case tk reaches
the first-order mutant FOMi:

r(tk, FOMi) =

{
true if tk reaches FOMi

false otherwise
(1)

For KTij , it is known that all of its test cases kill FOMi,
FOMj , and SS2OMij . On the one hand, if all of those test
cases only reach a single FOM, it is impossible for one FOM to
mask the other. To track such situations, we define Reachmin:3

Reachminij
= ∀tk ∈ KTij : r(tk, FOMi)⊕ r(tk, FOMj)

(2)

3⊕ is the XOR operator; for Reachmin, either a test case only reaches
one FOM or it only reaches the other FOM, never both.

On the other hand, if all the killing tests of an SS2OM reach
both of its mutations, it is possible to make an assumption
that the FOMs are partially masking each other. We define
Reachmax to investigate these cases:

Reachmaxij
= ∀tk ∈ KTij : r(tk, FOMi) ∧ r(tk, FOMj)

(3)

Finally, we can observe an intermediate situation. At least
one test case reaches both FOMs as well as at least one test
case reaches only one FOM. This way, we define Reachint

to track such SS2OMs:

Reachintij = ∃tk, tl ∈ KTij : r(tk, FOMi) ∧ r(tk, FOMj)

∧(r(tl, FOMi)⊕ r(tl, FOMj))
(4)

In our motivating example (see Section II-C),
{FOM1,FOM2} is Reachint and {FOM1,FOM3} is
Reachmin.

B. Research Method
In this study, we intend to answer the following research

questions.
RQ1: What is the proportion the SS2OMs so that their

constituent FOMs can mask each other?
RQ2: What is the reduction achieved by SS2OMs that their

constituent FOMs can mask or do not mask each other?
This study consists of four phases for each subject system’s

respective metamutant. The first three regards an exhaustive
search for SS2OMs. The last one performs the reaching
analysis. We implemented some optimizations based on well-
known and established mutation testing tools like PIT [10] and
PIT-HOM [11]. As seen next, we run only the test cases that
reach the target mutants.

First, we executed the test suite with all FOMs disabled
against the metamutant system. As output, we have all test
cases that reached each FOM. Second, we enabled each FOM
and executed the test cases recorded in the previous step
against it. As output, we have all FOMs’ killing tests. Third,
for each pair of FOMs with a non-empty set of killing tests,
we check if both form a valid 2OM and if their killing tests
overlap, i.e., have an intersection. If the two checks hold, we
executed the union of the test cases that reached each FOM
against the 2OM. If the killing tests of the current 2OM is
equals to or is a subset of the intersection of the killing tests
of their constituent FOMs, it is a SS2OM.

Fourth, we also retrieve information about which of the
SS2OMs’ constituent FOMs each test case has reached.
Listing 3 shows the necessary code instrumentation for the
READ_MUTANT method. Before the execution of each test
case, we reset mutantsReached. After the execution of
a test case, if it kills the current SS2OM, we check in
mutantsReached which mutations of the SS2OM have
been executed. As output, we have all SS2OMs classified as
Reachmax, Reachint, or Reachmin.
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Listing 3. READ MUTANT snippet.
boolean READ_MUTANT(int mut) {

if (isEnabled(mut)) {
mutantsReached.add(mut);
return true;

}
return false;

}

C. Results

The second column of Table III shows, for each subject
system, the number of SS2OMs found by the strategy de-
scribed in the previous subsection. The next three columns
show the division of the SS2OMs according to the three
reach classifications defined in this section, both in absolute
numbers and percentages. Moreover, for each subject system,
the number of SS2OMs representing the classification with
the majority of the SS2OMs is highlighted in bold. The last
three columns compare the reduction in percentage that three
sets of SS2OMs achieve by replacing the subsumed FOMs: the
complete set of SS2OMs, Reachmax and Reachmin SS2OMs,
respectively. We also highlighted the highest values of the last
two columns, for each system. The last row shows the overall
numbers for all systems.

Overall, only 3.01% of the SS2OMs found are classified
as Reachint. The analysis of each system separately reveals
variations that range from 0.51 to 8.00%. Thus, the minority of
the SS2OMs have part of their killing tests reaching their two
mutations and part reaching only one of their mutations. Then,
we decided to focus the rest of this section on the remaining
96.99% SS2OMs, particularly analyzing the reduction they
achieve.

The majority of the SS2OMs are Reachmax (more than
53%) but, surprisingly, the number of Reachmin SS2OMs
is only 10% less. Individually, four systems have more
Reachmax and five have more Reachmin SS2OMs. In both
toy systems, up to 80.00% and 91.35% of the SS2OMs
are Reachmin. For the larger systems, Commons CSV and
Monopoly have much more Reachmax SS2OMs, with 80.18%
and 64.62% respectively, while Commons CLI has much
more Reachmin SS2OMs. Commons Validator, the system
with more SS2OMs found, has 55.27% Reachmax. Gson
and Chess, the largest systems, have few more than 50% of
Reachmin SS2OMs. Finally, ECal is the system with the most
well-balanced ratio of Reachmax SS2OMs and Reachmin, a
difference of only 13 in absolute numbers in favour of the first.

Answering RQ1: Overall, in 53.52% of the SS2OMs, their
constituent FOMs can mask each other because the execution
of all test cases of these SS2OMs’ killing tests reaches their
two FOMs. In 43.47% of the SS2OMs, their FOMs do not
mask each other because only one FOM is in fact executed
by the killing tests. In 3.01%, the FOMs can mask each other
in part of the killing tests.

Despite the number of Reachmax and Reachmin SS2OMs
being balanced, the reductions they achieve are not, as shown
in the last two columns of Table III. This result was also sur-
prising for us. Only Commons Validator have their Reachmax

SS2OMs providing higher reduction than their Reachmin.
For the other eight systems and overall, Reachmin SS2OMs
achieve higher reduction. However, when both reduction per-
centages are compared to the one that all SS2OMs can achieve
(sixth column of Table III), it is clear that only one kind
of SS2OMs is not enough. Therefore, it is necessary to
combine both Reachmax and Reachmin SS2OMs to achieve
the highest possible reduction.

Answering RQ2: The reduction Reachmin SS2OMs
achieve is higher than the reduction Reachmax SS2OMs
do overall. Respectively, 17.95% and 14.48%. However,
SS2OMs from both sets are necessary to achieve the highest
possible reduction.

The most important finding of this study is that a consid-
erable amount of the SS2OMs’ mutations are not masking
the other, given that the execution of the SS2OMs’ killing
tests is not even reaching both mutations. In addition, all
killing tests of all Reachmin SS2OMs found in seven subject
systems execute the same mutation, while the other is never
executed. The exceptions are ECal and Commons Validator.
In the former, only one Reachmin SS2OM has part of their
killing tests executing one mutation and part executing the
other. In the latter system, it happens with only six Reachmin

SS2OMs. Such SS2OMs simply subsume their constituent
FOMs, i.e., they can replace their constituent FOMs without
loss of effectiveness and, consequently, they are still useful.
Interestingly, this phenomenon may also be present in search
techniques that use HOMs generated and compiled individu-
ally, techniques that generate mutations at Java bytecode level,
or even techniques that employ mutant schemata.

Given that the constituent FOMs of many SS2OMs are not
both reached by the SS2OMs’ killing tests, we propose another
search technique that only looks for SS2OMs such that both
constituent FOMs are actually reached. In such SS2OMs, their
FOMs have the potential to mask one another. The next section
describes a study with the proposed search technique.

V. STUDY #2

We list below the facts that motivated this second study.
• The results of Study #1 show that the mutations of almost

47% of the SS2OMs found are not both reached by the
SS2OMs’ killing tests.

• The literature about searching for SSHOMs [16], [18],
[26], [31] or performing higher-order mutation test-
ing [11] is rich of many distinct strategies designed for
these purposes. The way to select the HOMs is totally
dependent of the strategy, for instance, via a genetic
algorithm that chooses two HOMs to cross. These pieces
of research have in common that, if a test case fails for
a given HOM (despite the search strategy that suggested
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TABLE III
DISTINCT SS2OMS, THEIR CLASSIFICATION AND THE REDUCTION THEY PROVIDE.

System SS2OMs Reachmax

# (%)
Reachint

# (%)
Reachmin

# (%)
SS2OMs

reduction (%)
Reachmax

reduction (%)
Reachmin

reduction (%)

Vending M 25 3 (12.00) 2 (8.00) 20 (80.00) 14.04 1.75 12.28
Triangle 393 32 ( 8.14) 2 (0.51) 359 (91.35) 36.23 13.77 34.78
Monopoly 3,324 2,148 (64.62) 38 (1.14) 1,138 (34.24) 24.36 15.59 19.40
C CSV 4,430 3,552 (80.18) 46 (1.04) 832 (18.78) 20.32 15.03 15.24
C CLI 1,852 419 (22.62) 76 (4.10) 1,357 (73.27) 31.05 13.77 28.10
ECal 1,421 678 (47.71) 74 (5.21) 669 (47.08) 22.54 15.16 15.74
C Validator 17,546 9,697 (55.27) 736 (4.19) 7,113 (40.54) 24.52 22.71 20.21
Gson 6,970 3,243 (46.53) 217 (3.11) 3,510 (50.36) 20.42 12.45 15.76
Chess 8,959 4,268 (47.64) 161 (1.80) 4,530 (50.56) 20.38 10.81 16.41

Overall 44,920 24,040 (53.52) 1,352 (3.01) 19,528 (43.47) 22.37 14.48 17.95

it), it is treated as killed, regardless of how many of its
mutated parts have indeed been executed.

• The most accepted explanation that SSHOMs are mutants
harder to kill than their constituent FOMs is because their
mutations can partially mask each other [17], [18].

• The second part of the Motivating Example (Sec-
tion II-C), in which we obtain distinct SS2OMs if the
execution of their killing tests reaches both of their
mutations.

In this study, we propose a novel search strategy for
SS2OMs that considers an arbitrary 2OM killed if, and only
if, at least one test case reaches both its mutations and causes
the mutant to fail. It is possible to achieve this goal (i) by a dy-
namic search with a backtracking approach that executes each
test case repeatedly until all possible combinations of mutants
are exercised,4 (ii) via static analysis to identify whether a
piece of (mutated) code can reach another piece of (mutated)
code, or (iii) by improving the metamutant instrumentation
from the previous study to track whether each test case
executed the desired mutated points. We implemented (iii) and
named this strategy forced reach search (FRS). For comparison
purposes in the remainder of this section, we named the search
strategy of Study #1 as exhaustive search (ES).

A. Research Method
In this study, we formulate the following research questions.
RQ3: Are the SS2OMs found by FRS similar to the ones

found by ES, specially the Reachmax SS2OMs?
Since it is expected to have a different set of SS2OMs

found by this strategy in comparison to the SS2OMs found
in Study #1, it is necessary to compare them with a metric.
Therefore, we also investigate the mutants reduction, as in the
previous section.

RQ4: What is the potential5 reduction achieved by the
SS2OMs found by the FRS strategy?

To perform this study, we reused the results of the second
phase described in Section IV-B and the READ_MUTANT

4Such a backtracking approach is the main idea of SPLat, which is a
technique implemented to test all possible feature interactions in configurable
systems.

5We explain why using potential reduction instead of just reduction as a
threat in Section VII.

method of Listing 3. Moreover, we adapted the third and
fourth phases described in Section IV-B as follows. After the
execution of each test case, if a given 2OM fails on it, we
check in mutantsReached if the execution reached both
mutations of the 2OM. If both checks hold, we add the current
test case into the given 2OM killing tests set. FRS produces
the same result presented in the second part of our motivating
example in Section II-C.

B. Results

Table IV shows the results for this study. In the second
column, we present the number of SS2OMs the FRS strategy
was able to find. In the next three columns, we present three set
operations to compare the similarities and differences between
the SS2OMs found by the ES and FRS strategies. The last
column presents the reduction rate for the potential SS2OMs
found in this study.

TABLE IV
SS2OMS FOUND BY THE FRS STRATEGY

Systems FRS ES \ FRS ES ∩ FRS FRS \ ES Reduction
(# SS2OMs) (%)

Vending M 28 20 5 23 12.28
Triangle 83 359 34 49 15.94
Monopoly 8,285 1,199 2,125 6,160 34.41
C CSV 9,946 1,061 3,369 6,577 29.30
C CLI 15,662 1,358 494 15,168 36.23
ECal 4,275 668 753 3,522 25.27
C Validator 27,540 7,111 10,435 17,105 26.62
Gson 79,189 3,510 3,460 75,729 30.55
Chess 20,981 4,661 4,298 16,683 18.24

Overall 165,989 19,947 24,973 141,016 25.75

As shown in the second column, Triangle is the only system
for which FRS found less SS2OMs than ES. The number of
SS2OMs found for the other systems are considerable higher
than the ones in the Study #1.

To show how distinct the SS2OMs found by ES and FRS
are, we used the set difference operation,6 two times for each
system. First, we present in the third column of Table IV the
difference from ES to FRS, i.e., the number of SS2OMs in
ES that are not in FRS. To calculate the fifth column, we

6represented by the \ operator
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did the opposite. Since ES is much smaller than FRS, except
for Triangle, the same occurs for their set difference. In the
other systems, FRS found many more SS2OMs than ES did.
The most significant discrepancy occurs for Commons CLI
and Gson, where FRS found about nine and 21 times more
SS2OMs than ES, respectively.

To show the similarities of ES and FRS, in the fourth
column of Table IV, we show the intersection of both sets.
We can interpret that most of the Reachmax SS2OMs found
by ES can be in ES ∪ FRS because both have SS2OMs
that one of their FOMs reaches the other. The slight difference
among these sets can be understood since both strategies works
differently when considering an SS2OM killed. As could be
seen in our motivating example, a test case can be part of a
SS2OM’s killing tests set via ES and not via FRS.

Answering RQ3: The overall number of the SS2OMs found
by the FRS is considerably higher than the ones found by
ES. Their intersection are similar to the Reachmax SS2OMs.

After acknowledging how different the SS2OMs found by
ES and FRS are, we still need to compare such SS2OMs in
terms of their usefulness. As described above, we calculate
the potential reduction the SS2OMs found by FRS can achieve
and show the values for each subject system in the last column
of Table IV. SS2OMs from FRS of the first two toy systems
have potential reductions smaller than the SS2OMs from ES.
However, for the larger systems, SS2OMs from FRS have
higher potential reduction. Therefore, it is worth to perform a
more solid analysis over the SS2OMs from FRS to understand
if the potential reduction they can provide is in fact a relevant
reduction.

Answering RQ4: Not only the number of SS2OMs found
by FRS is higher than those by ES, but also the potential
reduction they can achieve is higher for all non-toy larger
subject systems.

VI. DISCUSSION AND IMPLICATIONS

In Section IV, we discuss about the Reachmin SS2OMs
constituent FOMs’. They may have their similarity, since their
killing tests are the same and only one mutation is executed
when running all test cases of the SS2OMs killing tests.
However, we did not investigate whether they produce the
same incorrect outputs or distinct incorrect outputs, which
could help identify how similar they are.

Some of these FOMs may be redundant [36]. Redundant
mutants are killed whenever other ones are killed and, there-
fore, do not contribute to the testing process [5]. It is worth
investigating, preferably statically, whether such FOMs are
similar or redundant and, consequently, not eligible to be
part of a HOM in a search strategy for SS2OMs (or even
SSHOMs). The related literature includes many studies that
help to avoid, identify and eliminate redundant mutants [21],
[37]–[41] as well as useless mutants [42], [43]. Comple-
mentary, some FOMs may subsume other FOMs [44] and,

before executing a search strategy for SSHOMs, it is worth
eliminating the subsumed FOMs.

In our motivating example (Section II-C), {FOM1,FOM3}
is recognized as an SS2OM not only by our implemented
ES in Study #1 (Section IV) but also, as far as we know,
by all other search strategies for SSHOMs proposed to date.
These strategies have a step that selects the next HOM to be
executed by the test cases. When the execution finishes, all
test cases that caused the target HOM to fail compose that
HOM’s killing tests set, regardless of which of its mutated
code was indeed executed. However, {FOM1,FOM3} is not
recognized by FRS in Study #2 (Section V). With respect to
{FOM1,FOM2}, it is recognized as an SS2OM only by FRS
and not by all other known strategies. In that context, the
following question arises: Are the SS2OMs found by FRS also
valuable and useful? To answer this question, it is necessary
deeper investigations about these SS2OMs, such as (i) if
they are indeed harder to kill and (ii) if they are able to
improve either the mutation score or the quality of the test
suite in comparison to “traditional” SS2OMs (i.e., SS2OMs
characterized in research prior to ours).

The primary reduction effect that SS2OMs achieve concerns
the number of mutants to be executed. One usefulness of
SSHOMs is that they can replace their constituent FOMs
without loss of effectiveness in the mutation testing process
(Section II-A). Reducing the test suite, which we did not
analyse in this work, is a direct consequence of reducing the
number of mutants, given that only the smallest number of test
cases necessary to kill the considered mutants should be kept.
The reduction proposed by Amman et al. [43] consists of min-
imal FOMs sets, also based on the subsumption concept. We
understand that both research initiatives are complementary.
In the future, we expect the research about SSHOMs could
generate enough knowledge to make a mutation testing tool
able to generate the minimal mutant sets (containing FOMs
and HOMs) without executing any test case.

We claim FRS as an alternative, but not an improved search
strategy for valuable 2OMs. It only considers situations where
all test cases that kill two FOMs and the 2OM they constitute
also reach both mutations in the respective 2OM. Study #2
analyzed the potential reduction the valuable 2OMs found
by FRS can provide in comparison to the SS2OMs found
by ES. Consequently, we shaded light on a not yet explored
research topic, which can, in the future, validate or refute
the potential reduction we found. Moreover, we believe our
studies generate useful knowledge for novel and faster search
strategies. However, analyzing the performance of ES and FRS
is not our concern given the current stage of the research.

One may wonder (i) how often a QA team needs to run the
mutation testing process to improve quality on the test suite
of a given system, and (ii) how useful research like ours and
the one of Amman et al. [43] are. On the one hand, due to the
high computational cost, running a mutation testing process
after each small change performed on a software system is
impracticable. On the other hand, the mutation testing process
is known as the most effective technique to improve test suites,
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which is likely to decrease the number of bugs in production.
Comparing our research with that of Amman et al. [43],

both process costly computational tasks by running test suites
against all target mutants. Such tasks generate useful infor-
mation that reveals the existence of redundant, useless or
subsumed mutants that can be either removed or replaced,
which results in minimum mutant sets (with either FOMs or
HOMs). Therefore, both research initiatives only identify room
to advance on finding as much knowledge about FOMs and
SSHOMs as possible. In the future, one could generate the
smallest mutant set without executing any test case.

With that, even a periodically performed mutation testing
process could benefit since the SS2OMs found in Study #1
achieve 23.7% of reduction in the number of mutants. Con-
sequently, strongly subsuming mutants of orders higher than
two could achieve an even more effective reduction.

We hope the results we found in both studies can inspire
the community of mutation testing researchers to investigate
mutants with orders higher than two with the same analysis
and novel analysis based on ours. For instance, depending
on the Reachmin or Reachmax SS2OMs characteristics, a
search strategy may favor more occurrences of one instead
of the other. However, recall that both types of SS2OMs are
necessary to provide the highest possible reduction.

VII. LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss some limitations about mutant
generation, test case executions, and the proposed strategies, as
well as some threats to the validity of the studies and actions
to mitigate them.

There may be implementation errors in our tool and in both
search strategies. To minimize this threat, we randomly choose
some FOMs and 2OMs to replicate their mutations manually
into the original source code of the systems. We then ran all
test suites against each of the modified programs and compared
the test cases that failed with the killing tests reported by the
strategies.

The results do not generalize, since our setup consists of
four mutation operators and nine Java systems. The systems
may not be sufficiently large and representative, although other
studies about mutation testing also present such limitations.
To mitigate this threat, we implemented mutation operators
that can be applied in other programming languages and
chose systems of distinct domains. Chess and Monopoly were
developed and are maintained by software engineering groups
for research purposes. Gson, from Google, and the other three
from Apache (Commons CSV, CLI and Validator) are well-
known open source projects and widely used in industry.

One may point the small set of four mutation operators.
First, they are were used in recent studies [26], [31]. Second,
three of them, the binary ones, are a subset of a set of five op-
erators reported by Offutt et al. [42] as the most representative,
and recent works also recognized the importance of deletion
operators [45], which are represented by SBR in this paper.
Third, we configured our mutation tool to generate all possible
mutants in each subject system.

We opted for not modifying the source code and the original
test suites available in the selected versions of the subject
systems. Therefore, such assets may not present a high quality.
In this case, we ran code coverage tool and ensured all
test cases selected for both studies passed when no mutants
are enabled. However, mutant executions can result in side-
effects, such as changing the value of a static attribute. As
a consequence, side effects can lead a mutant to fail due to
an invalid state caused by the previous execution of another
mutant. Therefore, we adapted our tool to help us identifying
all side effects situations and it was necessary to disregard a
few test cases and mutants in some of our subject systems.
For Monopoly, it was necessary to create a reset function to
restore the dice values. It simulates the behavior of running
each test case in a different JVM instance.

Finally, regarding the FRS search strategy, note that it finds
only SS2OMs that one of their constituent FOMs reaches the
other. In Section V, we refer to the reduction in mutation
testing process they can achieve by replacing the subsumed
FOMs as potential reduction. This is because, differently from
all other strategies, a test case somehow forces the 2OMs
existence. Therefore, it deserves further analysis, as described
in Section VI, to conclude such reduction is real. Otherwise,
the SS2OMs can be as valuable as any random set of 2OMs.

VIII. RELATED WORK

We list below works about HOMs which are somehow
similar to the context and the setup of the two studies in
this paper. To the best of our knowledge, there is no work
specifically about the SSHOMs’ mutations masking (or even
reaching) each other. However, the work of Gopinath et al. [46]
presents a theory of composite faults on which complex faults
of a program have their simple faults masking each other.

The literature is plenty of studies investigating 2OMs under
distinct purposes. Polo et al. [27] empirically analysed muta-
tion equivalence and mutation testing adequacy of 2OMs in
comparison to FOMs. Papadakis and Malevris [28] compared
the application benefits in terms of the number of produced
mutants, the number of equivalent ones, and the number of test
cases needed to satisfy each mutation variant criterion. Mateo
et al. [30] extended Polo et al’s work [27] to investigate the
adequacy of second-order mutation at system level in larger
systems. Kintis et al. [21] proposed four second-order mutation
testing strategies: Relaxed Dominator and Strict Dominator us-
ing only 2OMs, Mixed 20%, and Mixed 50% using both FOMs
and 2OMs. They empirically evaluate collateral coverage and
the same aspects of Papadakis and Malevris’ work [28]. In
our both studies, we are dealing with valuable and hard to kill
2OMs (the strongly subsuming) by analysing the reduction
they can provide in the mutation testing process.

In some of the works mentioned above, the authors
proposed different forms for combining FOMs to generate
2OMs. For instance, LastToFirst, DifferentOperators, and Ran-
domMix [27]; FirstToLast, SameNode, SameUnit, SameUnit
FirstToLast, and SameUnit DifferentOperators [28]; Last-
ToFirst, BetweenOperators, Random, and EachChoice Mateo
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et al. [30]. In our both studies, our target are SS2OMs, from
all possible combinations of FOMs.

Due to the exponential search space for SSHOMs, many
studies in literature proposed distinct search-based software
engineering (SBSE) techniques to find such valuable mutants.
Most of them based on evolutionary algorithms. For instance,
greedy [17], hill climbing [17], genetic algorithms [17], [25],
multi-objective optimization algorithms [47], [48], and multi-
objective hyper-heuristic approach to search for 2OMs, includ-
ing SS2OMs [49]. In our study, we implemented two search
strategies, one exhaustive and one inspired on configurable
systems testing and to find all possible SS2OMs, given the
setup and tooling described in Section III.

Wong et al. [26] adapted a tool to tackle the feature
interactions problem in configurable systems testing to the
context of mutation testing. They treated mutations as vari-
ability and adapted VarexC [50] to design Searchvar, a search
strategy for SSHOMs in Java systems. Based on information
gathered from the discovered SSHOMs, they proposed another
search strategy: Searchpri. In the second study of this paper
(Section V), we implemented a search strategy for SS2OMs
inspired by SPLat [51], a tool designed to find all possible
feature interactions in configurable systems. One particular
difference is the different type of SS2OMs we are looking
for: one of their constituent FOMs must reach the other.

IX. CONCLUSION AND FUTURE WORK

This paper reported on two complementary studies that were
motivated by what makes the Strongly Subsuming Second-
Order Mutants (SSHOMs) harder to kill than their constituent
First-Order Mutants (FOMs). One of the most plausible expla-
nations in the literature is that the SSHOMs’ constituent FOMs
(partially) mask each other [17], [18]. Before analyzing the
masking phenomenon in general SSHOMs, we investigated
whether the SS2OMs’ killing tests reached both of their
mutations.

The first study encompassed an exhaustive search for
SS2OMs in nine subject systems. Surprisingly, in a large pro-
portion (almost 44%) of the SS2OMs found, their constituent
FOMs were not both reached by the execution of the test cases
of the SS2OM’s killing tests. In other words, the FOMs are
not masking each other.

In the second study, we employed a novel search strategy
for SS2OMs, the so-called forced reach search (FRS). FRS
relies on an extra code instrumentation for the metamutant
used in Study #1. FRS takes a 2OM into account if, and only
if, the 2OM fails on a test case and its two mutations are
reached by such a test case. The strategy was applied to nine
programs that were used in the first study and has shown (i) a
potential to find more SS2OMs than the exhaustive traditional
approach, and (ii) a potential to achieve higher cost reduction
for mutation testing regarding the number of mutants to be
executed.

As future work, we intend to perform static analysis for a
preliminary diagnostic if the mutations of a given 2OM can
be reached by an arbitrary execution of a system under test.

Such information can supply novel search strategies to avoid
executing useless HOMs. Moreover, inspired on the RIPR
model [52], FRS can be improved to track not only reachability
but also whether the infection of a mutation propagates to
the other mutation of an SS2OM candidate. It is also worth
investigating strongly subsuming mutants with orders larger
than two. Moreover, we intend to enlarge the set of operators
used in our metamutant-based mutation implementation, as
well as the set of systems that compose our dataset. We
also plan to extend the study of Guimarães et al. [53], who
investigated dynamic mutant subsumption relations for FOMs,
to the context of HOMs, as well as to explore higher-order
mutation testing tools like PIT-HOM [11].

We also afforded an online repository for our
experimental artifacts, which is publicly available at
https://jpaulodiniz.github.io/SSHOMs.
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