
Finding Collaborations based on Co-Changed Files*

Kattiana Constantino1, Eduardo Figueiredo1

1Computer Science Department
Federal University of Minas Gerais (UFMG)

Belo Horizonte – MG – Brazil

{kattiana,figueiredo}@dcc.ufmg.br

Abstract. Collaboration is essential in software development, but finding sui-
table collaborators can be challenging in large projects like open-source ones.
In this work, we proposed investigating collaborative development based on si-
milar code interests and tool-supported strategies to help developers find suita-
ble collaborators. Five empirical studies were conducted, including interview
and survey studies. Two strategies based on co-changed files and a prototype
tool named COOPFINDER were provided and evaluated for their effectiveness.
GitHubusers and non-users found the strategies and the tool useful. Our re-
sults suggest that fostering collaborations in projects can prevent wasted resour-
ces and sustain project continuity.

Resumo. A colaboração é essencial no desenvolvimento de software, porém en-
contrar colaboradores adequados pode ser um desafio em grandes projetos de
código aberto. Neste trabalho, investigamos o desenvolvimento colaborativo de
código com base em interesses similares para ajudar os desenvolvedores a en-
contrar colaboradores adequados. Cinco estudos empı́ricos foram conduzidos,
incluindo entrevistas e questionários. Duas estratégias baseadas em arquivos
co-alterados e um protótipo denominada COOPFINDER foram propostas e ava-
liadas. Usuários ou não do GitHubacharam as estratégias e a ferramenta
úteis. Os resultados sugerem que promover colaborações em projetos pode evi-
tar o desperdı́cio de recursos e manter a continuidade do projeto.

1. Introduction
Consider two hypothetical scenarios. In the first scenario, Mary is a core team member of
an open-source software project who wants to attract more contributors to help develop
new features and manage the project. However, she notices that many developers have
not made any contributions for a long time or have stopped contributing altogether. Thus,
Mary decides to organize an event to encourage the involvement of these inactive develo-
pers and attract new ones. Moreover, Mary realizes it would be interesting for the project
if active developers motivate others to contribute again or make their first contributions.
Thus, the chances of engagement and assertive contributions would be more significant.

In the second hypothetical scenario, Joseph is a young developer and a volunteer
in an OSS project hosted on GitHub. He has tried to make a few contributions to a
specific project. For example, he was recently asked to design a new feature for this

*This work relates to a Ph.D. thesis defended in the Graduate Program in Computer Science of the
Universidade Federal de Minas Gerais on July 15, 2022. Authors order: Ph.D. Candidate and Advisor.

Figura 1. Core member called other core developers to help with this issue.

Figura 2. A new developer offered help with this issue. And, the core member
suggested that they work collaboratively.

project. However, Joseph is not very familiar with this specific project. Thus, he needs
some help. Perhaps, he could find another developer to discuss various design ideas to
have new insights. Therefore, Mary and Joseph look for the solution to their problems.
In other words, they want to find other developers with the same interests in the project.
That is, developers prefer or are familiar with specific parts of the code, being able to make
contributions regarding these parts. Consequently, they contribute to the engagement in
the project as a whole and enhance the opportunities for collaborations.

Although Mary and Joseph are hypothetical cases, Figure 1 shows a concrete
example of a GitHubproject in which a core member called five other developers (th-
ree core and two casual developers) to help him with an issue1. The post author probably
thought that these developers’ work would be relevant to this issue; thus, the author menti-
oned (@) <developer> to join in the discussion. However, for some reason, none of them
answered the request. Hence, this real example leads us to think about one of our general
questions: although they are members of the project, would they be the most appropriate
and interested developers to help the post author?

Figure 2 presents a second part of the same example. After one day, another de-
veloper, different from the five called ones, offered to help. Afterward, the issue author
offered to code together or to help this developer as a mentor. By observing this second si-
tuation, we could wonder: since the core members are overloaded, what other developers
could be called upon to work together? After a few days, that issue was closed. Despite
the enthusiasm of the issue author to help in what the new developer needed, there is no
evidence that the collaboration happened. There was no record of commits on the new
developer fork. Moreover, there is no evidence that any other developers helped the core
member solve this project’s issue.

1https://github.com/okfn-brasil/serenata-de-amor/issues/447

2. Problem Statement
Previous work showed that developers usually prefer to request collaboration from core
team members, who are supposed to have sufficient motivation, knowledge, and expe-
rience in the project [Minto and Murphy 2007, Kononenko et al. 2016]. However, ba-
sed on other prior studies, core team members may be overwhelmed and, as a result,
they may not provide collaborative support promptly [Yu et al. 2015, Gousios et al. 2015,
Steinmacher et al. 2018]. Moreover, other experienced developers, who are not part of
the core team, could be better used by the project. In other words, all collaboration is
essential for the sustainability of the project [Gamalielsson and Lundell 2014]. Hence, all
contributions should be valued and encouraged [Pham et al. 2013, Gousios et al. 2014,
Pinto et al. 2016].

Previous work also mentioned that the lack of people performing some roles
that compose the core team, such as maintainers, supporters, reviewers, and others,
impacts the sustainability of the project [Jiang et al. 2015, Costa et al. 2021]. Another
impact on the project is related to developer turnover. For instance, a small group of
developers may be overloaded and centered on the project information and knowledge
[Avelino et al. 2016, Ferreira et al. 2017]. Moreover, other developers may be underused,
even scarce, or with restricted access to information due to limited knowledge-sharing op-
portunities (e.g., collaborations, discussions) [Tamburri et al. 2015]. Both situations can
frustrate the developers, encouraging them to leave the project. All of the issues raised
above are on how the community of developers relates to each other. Moreover, how these
relationships positively or negatively impact the project. Consequently, we must consider
how to optimize collaboration among project developers and maintain a balanced team.

3. Research Goals
This work aims to support developers, maintainers and researchers with a better unders-
tanding of how to improve collaboration opportunities among developers in a specific
project and, consequently, avoid project starvation. Thus, the general objective can be
divided into the following specific goals (SGs) as follows.

• SG1 Investigate the motivations, processes, interactions, and barriers involved in
collaboration during open–source software development.

• SG2 Investigate how open the developers are for collaboration with others.
• SG3 Provide tool–supported strategies based on co–changed files to find suitable

collaborators.
• SG4 Evaluate developers recommendations based on co–change files from the

point of view of who receives the recommendations.
• SG5 Evaluate the effectiveness of developer recommendation tools in suppor-

ting developers and maintainers, considering both perspectives (GitHub user and
non–user).

4. Method
We divided this work into five main steps described in Figure 3. Therefore, this research
begins with an interview study (Step 1). Afterward, we designed and applied a survey
study (Step 2) to investigate if developers are open to collaborations. Following it, we
designed and implemented tool–supported strategies of developer recommendation based

on similar interests (Step3). Next, we designed and applied a survey study (Step 4) to
evaluate the developer recommendations. Finally, we performed a controlled experiment
(Step 5) to complete the evaluation.

Step 1. As shown in Figure 3, we carried out an interview study to explore
the collaborations, processes, communication channels, and barriers and challenges fa-
ced by developers in open–source software development. We focused on understanding
(i) what motivates developers to collaborate, (ii) the collaboration process adopted, and
(iii) challenges and barriers involved in collaboration. Furthermore, we set the goals of
our interviews using the Goal/Question/Metric template (GQM) [Basili and Weiss 1984].
For the data analysis, we applied standard coding techniques for qualitative rese-
arch [Corbin and Strauss 2014, Creswell and Creswell 2017].

Step 2. According to Easterbrook et al. (2008), survey studies, usually associated
with the application of questionnaires, are used to identify characteristics of a great po-
pulation. Surveys are meant to collect data to describe, compare, or explain knowledge,
behaviors, and attitudes [Pfleeger and Kitchenham 2001]. We performed a survey study
(Figure 3) to cross-validate the findings of ours interviews. We aimed to investigate how
open developers work collaboratively based on their behaviors and to identify and check
the main tasks to explore further collaboration opportunities.

Step 3. As detailed in Figure 3, based on the lessons learned from the previ-
ous steps, we designed and proposed two strategies of developer recommendation ba-
sed on coding activities, especially in co–changed files, that is, modifications made by
developers on the same file. Inspired in the TF–IDF (Term Frequency–Inverse Docu-
ment Frequency)[Salton 1989] weighting scheme established in the Information Retri-
eval field, these strategies first estimate the importance of relevant files modified by
developers and use these estimates to represent each developer “profile”. As a se-
cond step, they estimate the similarity between developers using the Cosine metric
[Salton 1971, Salton and Harman 2003], providing top-ranked developers according to
this measure as recommendations. Furthermore, we designed and implemented a visual
tool to support these strategies.

Step 4. We performed a survey study to evaluate two developer recommenda-
tion strategies based on co-change files from the who receives the recommendations (Fi-
gure 3). These sets of files can indicate that developers have interests and familiarity
with specific part of the project, impacting directly on collaborative work among develo-
pers. Thus, we considered the co–changed files to strengthen the ties among developers
[Minto and Murphy 2007, Canfora et al. 2012]. To extract these files, we considered the
number of commits for STRATEGY 1. For STRATEGY 2, we used the number of chan-
ged lines of code. We mined data from GitHub public repositories and surveyed 102
developers from these repositories.

Step 5. We performed a controlled experimental study to evaluate two recommen-
dation strategies and the proposed visual tool (Figure 3). Thus, we conducted a controlled
experiment with 35 participants. To reduce the learning effect on the assessment results,
we used the Latin square fisher1992arrangement to distribute the tasks and tools between
two groups of participants (Figure 3). We asked participants to perform the questionnaires
of experiment tasks to find collaborators with similar interests using a prototype recom-

Pilot Study Participant Selection Project Selection Interview Protocol Qualitative Analyses

Step 1

GitHub Repositories Feature Extraction Changed File
Scoring

Recommendation
Model

CoopFinder
Prototype

Step 3

Opinion Survey Quantitative and
Qualitative Analyses

Participant C 1 and 2

Top-1
Recommended

 Developer

Strategy 1

Strategy 2

Surveyed
Developer

Participant A

Participant Selection

Step 4

Pilot Study Population Sampling

Experiment (~ 1:10 hour)

Latin Square Design -
Experiment Tasks (1 hour)

Data Collection

Quantitative and Qualitative Analyses

Group 2

Session Training First Tool Second Tool

Group 1

(10 min)

Pre-assignement
questionnaire

Answering (10 min)

Demographic
Information

Post-assignement
Questionnaire

Answering (10 min)

CoopFinder
Feedback

Participant Selection

Convenience and
Snowball

Recruitment
Technique

Step 5

Opinion Survey Quantitative and
Qualitative Analyses

Step 2

Pilot Study Population Sampling

Figura 3. Overview of the PhD research steps.

mendation tool, and GitHub. We set the goal of our study using the Goal/Question/Metric
(GQM) template [Basili and Weiss 1984]. We answered the some RQs applying Hypothe-
ses tests. Besides, we analyzed and answered others qualitatively using standard coding
techniques [Corbin and Strauss 2014, Creswell and Creswell 2017]. Last, we submitted
this research for the Ethical Committee of our institution before performing this study
(CAAE: 55476922.0.0000.5149).

5. Contributions and Publications
One of the main expected contributions of this work is the lessons learned concerning col-
laboration in open–source software development. With our results, we believe that practi-
tioners acquire the necessary knowledge to improve the collaborations among developers
and to avoid starvation in the project. The second main expected contribution is the vi-
sual framework to help developers improve collaboration opportunities in a open–source
software development project. The recommendations are extracted from the software de-
velopment activities among developers of the same project. Until the date of production
of this document, the following publications were by products of this work, and contain
parts of the doctoral thesis results.

1. Understanding Collaborative Software Development: An Interview Study. 15TH
IEEE/ACM International Conference on Global Software Engineering (ICGSE),
Seoul, South Korea, 2020. [Constantino et al. 2020].

2. Perceptions of Open-Source Software Developers on Collaborations: An Inter-
view and Survey Study. 2021. Journal of Software: Evolution and Process (JSEP),
page e2393. [Constantino et al. 2021].

3. CoopFinder: Finding Collaborators Based on Co–Changed Files. 2022. IEEE
Symposium on Visual Languages and Human–Centric Computing (VL/HCC),
Rome, Italy, 2022. [Constantino and Figueiredo 2022].

4. Dual Analysis for Helping Developers to Find Collaborators Based on Co–
Changed Files: An Empirical Study. 2023. Software: Practice and Experience
(SPE). doi: 10.1002/spe.3194. [Constantino et al. 2023].

5. Recommending Collaborators Based on Co–Changed Files: A Controlled Experi-
ment. 2023. XVIII Simpósio Brasileiro de Sistemas Colaborativos (SBSC 2023).

Our work (1) has been recognized with an honorable mention at the prestigious
ICGSE/2020 conference. This conference is renowned worldwide for its focus on soft-
ware engineering processes and globally distributed software development. In recognition
of the quality of our work (1), we were invited by ICGSE/2020 to contribute with work
(2) to a special issue in the Journal of Software: Evolution and Process (Impact factor
(2021):1.864). Furthermore, our work (3) has been accepted for presentation at the IEEE
Symposium on Visual Languages and Human-Centric Computing, widely recognized as
the premier international forum for research on this topic. Another significant accom-
plishment is the publication of our work (4) in the journal of Software: Practice and
Experience (Impact factor (2021):3.200), which is highly respected for its contributions
to the practical application of software techniques and tools for both software systems and
applications. We are also delighted to report that our most recent work (5) has been ac-
cepted for submission at a national conference and is currently under submission process.
We are optimistic about the potential impact of this work and look forward to sharing the
results with the broader research community.

Furthermore, our work provided us with the opportunity to visit the Institute of
Software Research (ISR) at Carnegie Mellon University (CMU) in Pennsylvania, United
States from October 2018 to March 2019. During this period, we had the privilege of
being supervised by Professor Christian Kästner. Our exchange program was made possi-
ble with the support of the Programa de Doutorado Sanduı́che no Exterior (PDSE) from
CAPES grant 88881.189537/2018-01.

6. Summary of the Work and Contributions
Software developers must collaborate at all stages of the software life-cycle to create qua-
lity software systems. However, for large projects with hundreds of dynamic developers,
such as several successful open–source projects, it can be very complex to find developers
with the same interests and, thus, gain suitable collaborations and new insights. Resour-
ces and efforts may be wasted in the project context, discouraging many developers from
staying. It can be costly to manage so many contributions, which is another question
for the maintainer who wants to take advantage of this small, modest, but useful contri-
bution made by a volunteer developer in the shortest possible time. Thus, this section
summarizes the results of this work, regarding its five specific goals, as follows.

• SG1 Investigate the motivations, processes, interactions, and barriers involved in
collaboration during open–source software development.

• SG2 Investigate how open the developers are for collaboration with others.
• SG3 Provide tool–supported strategies based on co-changed files to find suitable

collaborators.
• SG4 Evaluate developers recommendations based on co-change files from point

of view of who receives the recommendations.
• SG5 Evaluate developers tool–supported strategies from the point of view of

maintainers and developers (GitHubuser and non-user).

For SG1, we analyzed data collected through interviews conducted with develo-
pers from different open–source software communities to know how collaborations hap-
pen, the process, the barriers, and challenges developers face. Some interesting findings
from SG1 are:

• Collaboration transcends coding, and includes documentation and management
tasks.

• The collaboration process has different nuances and challenges when considering
members of the core team interacting with each other and members of the team
interacting with peripheral developers. Collaboration is heavily driven by issue
management, and management skills impact it in defining, categorizing, and si-
zing tasks accordingly, in such way that the community (including newcomers)
can collaborate independently.

• Knowledge management is a challenge in collaboration, and it is important to
carefully define communication policies to mitigate and avoid problems related to
knowledge retention and decentralization.

For SG2, we designed and performed a survey study to understand better how
collaboration happens in software development projects based on developers’ behavior.
In particular, we focus on how open developers are to work collaboratively with others
and the main tasks that increase collaboration opportunities. Some interesting findings
from SG2 are:

• Most participants (86%) prefer to work collaboratively with the core team, 29%
prefer to work in independent tasks.

• When exposed to the project’s collaborative scenario, the majority of participants
selected the category related to software development (65%), maintenance (50%),
issues management (45%), and mentorship/knowledge sharing (35%) as the main
tasks to work collaboratively with other developers.

• Despite personal preferences to work independently, some developers still consi-
der collaborating with others in some scenarios, especially in development tasks.

The findings from SG1 and SG2 are inputs for the next step related to the SG3,
which proposes tool-supported strategies to help developers find collaborators in the open-
source projects. Thus, we propose two developer recommendation strategies based on co-
ding activities, especially in co–changed files, that is, modifications made by developers
on the same file. This set of files can indicate that developers have interests and famili-
arity with a specific part of the project, impacting directly on collaborative work among
developers. To extract these changes, we used the number of commits for STRATEGY 1.
For STRATEGY 2, we used the number of lines of changed code (code churns). Further-
more, we proposed COOPFINDER, a visual and interactive tool that implements the two
strategies (STRATEGY 1 and 2) to connect collaborators based on a set of files of their
interest.

For SG4, we evaluated two developer For SG4, we evaluated two developer re-
commendation strategies based on coding activities from the point of view of who recei-
ves the recommendations. Besides, we analyzed the joint of these two strategies and the
novelty of their recommendations, i.e., how recommended developers are different from
what is known. Thus, we mined data from GitHubpublic repositories and surveyed 102
developers from these repositories. Besides, we collected the data from an opinion survey
answered by 102 GITHUB developers of popular projects. Some exciting findings from
SG4 are:

• Concerning the level of interest in and familiarity with co-changed files, we can
conclude that developers have a similar interest in the co-change files for two stra-
tegies, especially for STRATEGY 1. These considerations are of relevance because
many opportunities for contributions to the project are linked with coding. Thus,
this result may indicate one less barrier to improving developers’ collaboration.

• The acceptance rates were 80% and 65% for STRATEGY 1 and STRATEGY 2,
respectively.

• The joint strategies presented the best precision (81%), which raises evidence of
the benefits of combining both Strategies 1 and 2.

• The two recommendation strategies have shown favorable results related to no-
velty. That is, they did not overload the group of core developers. The casual
developers evaluated developers from all groups, mainly casual developers and
newcomers. We highlight that developers should pay attention to new recom-
mendations (novelty). Many developers are expecting an opportunity to make
pertinent contributions to the project.

Finally, for SG5, we conducted a controlled experiment to evaluate the developer
recommendation strategies and the COOPFINDER. This user evaluation concerned usabi-
lity and user satisfaction involving 35 participants, of which 18 were GitHubusers, and
17 were non-users. All of them are maintainers and/or developers of software projects.
As required, the study was submitted and approved to the Brazilian Committee for Ethics
in Research2. Some interesting findings from SG5 are:

2Protocol CAAE:55476922.0.0000.5149

• We observed that participants could perform tasks more easily using COOPFIN-
DER than GitHub. For instance, they spent less time using COOPFINDER. While
GitHubrequired more time to perform the tasks. It may indicate the ease of use
of the COOPFINDER tool.

• Participants mentioned that COOPFINDER is exciting and helps project maintai-
ners. They also said, as a strength of the tool, that it is easy and has an intuitive
interface. Besides, about 66% of the participants confirmed they would use or re-
commend this tool. On the other hand, some participants did not see the benefits
of using the tool in smaller teams, where collaborators are known. However, other
participants (20%) conditioned the use or recommendation of the tool.

• Participants mainly suggested features to improve the developer recommendati-
ons, such as programming language, communications, and professional experi-
ence. They also suggested gender issues, soft skills, and collaboration in similar
projects.

7. Acknowledgments
This research was partially supported by Brazilian funding agencies: CAPES
(88881.189537/2018-01) and FAPEMIG (Grant PPM-00651-17).

Referências
Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016). A novel approach for

estimating truck factors. Proceedings of the 24th International Conference on Program
Comprehension (ICPC), pages 1–10. IEEE.

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering (TSE), (6):728–738.

Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. (2012). Who is going to mentor
newcomers in open source projects? Proceedings of the 20th International Symposium
on the Foundations of Software Engineering (FSE), pages 1–11.

Constantino, K., Belém, F., and Figueiredo, E. (2023). Dual analysis for helping deve-
lopers to find collaborators based on co-changed files: An empirical study. Software:
Practice and Experience, pages 1–27.

Constantino, K. and Figueiredo, E. (2022). Coopfinder: Finding collaborators based
on co–changed files. Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 1–3. IEEE.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Kästner, C. (2021). Perceptions
of open-source software developers on collaborations: An interview and survey study.
Journal of Software: Evolution and Process, 33:e2393.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Kästner, C. (2020). Unders-
tanding collaborative software development: An interview study. Proceedings of the
15th International Conference on Global Software Engineering (ICGSE), page 55–65.
Association for Computing Machinery.

Corbin, J. and Strauss, A. (2014). Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory. Sage Publications, Inc Thousand Oaks.

Costa, C., Figueirêdo, J., Pimentel, J. F., Sarma, A., and Murta, L. (2021). Recommen-
ding participants for collaborative merge sessions. IEEE Transactions on Software
Engineering, 47(6):1198–1210.

Creswell, J. W. and Creswell, J. D. (2017). Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches. SAGE Publications.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). Selecting empirical
methods for software engineering research. In Guide to advanced Empirical Software
Engineering, pages 285–311. Springer.

Ferreira, M., Valente, M. T., and Ferreira, K. (2017). A comparison of three algorithms for
computing truck factors. Proceedings of the 25th International Conference on Program
Comprehension (ICPC), pages 207–217. IEEE.

Gamalielsson, J. and Lundell, B. (2014). Sustainability of open source software commu-
nities beyond a fork: How and why has the libreoffice project evolved? Journal of
Systems and Software, 89:128–145.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An exploratory study of the pull-
based software development model. Proceedings of the 36th International Conference
on Software Engineering (ICSE), pages 345–355.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v. (2015). Work practices and
challenges in pull-based development: The integrator’s perspective. Proceedings of
the 37th International Conference on Software Engineering (ICSE), pages 358–368.

Jiang, J., He, J.-H., and Chen, X.-Y. (2015). Coredevrec: Automatic core member recom-
mendation for contribution evaluation. Journal of Computer Science and Technology,
30(5):998–1016.

Kononenko, O., Baysal, O., and Godfrey, M. W. (2016). Code review quality: How
developers see it. Proceedings of the 38th International Conference on Software Engi-
neering (ICSE), pages 1028–1038.

Minto, S. and Murphy, G. C. (2007). Recommending emergent teams. Proceedings of
the 4th International Conference on Mining Software Repositories (MSR), pages 5–5.
IEEE.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles of survey research part 1: Tur-
ning lemons into lemonade. SIGSOFT Software Engineering Notes, 26(6):16–18.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schneider, K. (2013). Creating a
shared understanding of testing culture on a social coding site. Proceedings of the 35th
International Conference on Software Engineering (ICSE), pages 112–121. IEEE.

Pinto, G., Steinmacher, I., and Gerosa, M. (2016). More common than you think: An in-
depth study of casual contributors. Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 112–123. IEEE.

Salton, G. (1971). The smart retrieval system: Experiments in automatic information
retrieval.

Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval
of. Reading: Addison-Wesley, 169.

Salton, G. and Harman, D. (2003). Information retrieval. In Encyclopedia of Computer
Science.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A. (2018). Almost there: A
study on quasi-contributors in open-source software projects. Proceedings of the 40th
International Conference on Software Engineering (ICSE), pages 256–266. IEEE.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H. (2015). Social debt in software
engineering: Insights from industry. Journal of Internet Services and Applications,
6(1):1–17.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: Determi-
nants of pull request evaluation latency on github. Proceedings of the 12th International
Conference on Mining Software Repositories (MSR), pages 367–371. IEEE.

