

Detection and Description of Variability Smells

Gustavo Vale, Eduardo Figueiredo (Orientador)

Programa de Pós-Graduação em Ciência da Computação (PPGCC),

Departamento de Ciência da Computação – Universidade Federal de Minas Gerais

(UFMG), Belo Horizonte – MG - Brasil

{gustavovale, figueiredo}@dcc.ufmg.br

Nível: Mestrado

Ano de ingresso no programa: Fevereiro de 2014

Época prevista de conclusão: Janeiro de 2016

Data de aprovação da proposta de dissertação: Março de 2015

Eventos relacionados: SBES, SBCARS

Abstract. Software Product Line (SPL) is a set of software systems that share a

common, managed set of features satisfying the specific needs of a particular

market segment. The systematic and large reuse adopted in SPLs aim to

reduce time-to-market and improve software quality. In spite of the benefits of

SPLs and like any software, undesired properties may be present in all related

artifacts, such as, source code and feature models. Undesired properties, in a

general context, are called bad smells. Bad smells are symptoms that

something may be wrong in system design or code. On the context of SPLs,

bad smells are called variability smells. Variability smells is a relative new

topic of research and need to be further explored. Additionally, variability

smells are more useful when it is known to answer the three following

questions: What are they? How to detect each of them (detection strategies)?

How to solve each of them (refactoring methods)? We performed a Systematic

Literature Review (SLR) to answer these three and other questions. As results

of the SLR, we found 91 variability smells, detection strategies for 63

variability smells, 106 refactoring methods, and, 23 different SPLs in the

context of bad smells and SPLs. The majority of detection strategies are based

on logical combination of metrics. For this, it is necessary to know a method

to derive software metric thresholds and, what metrics are proposed in the

context of SPLs. Therefore, we are performing another SLR related to

software metrics in the context of SPLs. We performed a comparison and

proposed a method to derive thresholds after this comparison. As future plans,

we want to propose variability smell detection strategies more effective than

traditional ones and propose some variability smells to fill gaps found in the

literature.

Keywords: Software Product Lines, Variability Smells, Detection Strategies,

Refactoring Methods, Software Metrics, Thresholds

1. Introduction

Software Product Line (SPL) is a set of software systems that share a common, managed

set of features satisfying the specific needs of a particular market segment [Pohl et al.,

2005]. The systematic and large-reuse adopted in SPLs aim to reduce time-to-market

and improve software quality [Pohl et al., 2005]. The software products derived from an

SPL share common features and differ themselves by their specific features [Pohl et al.,

2005]. A feature represents an increment in functionality or a system property relevant

to some stakeholders [Kastner et al., 2007]. The possible combinations of features to

build a product, is called, SPL variability [Weiss and Lai, 1999] and, it can be

represented in a feature model [Kang et al., 1990]. A feature model is a formalism to

capture and to represent the commonalities and variabilities among the products in an

SPL [Asikainen et al., 2006].

 To develop an SPL, we can use different approaches, such as annotative and

compositional [Apel et al., 2013]. For these approaches, we have several techniques,

such as preprocessors, virtual separation of concerns, aspect-oriented programming, and

feature-oriented programming. Those approaches and techniques aim to support

configuration management at source code level and improve the software quality. In

spite of that, undesired properties may be present in all related artifacts, such as source

code and feature models [Apel et al., 2013]. Undesired properties, in a general context,

are called bad smells. Bad smells are symptoms that something may be wrong in system

design or code [Fowler et al., 1999]. On the context of SPLs, bad smells are called

variability smells. A variability smell is a perceivable property of a product line that is

an indicator of an undesired code property. It may be related to all kinds of artifacts in a

product line, including feature models, domain artifacts, feature selections, and derived

products [Apel et al., 2013]. Bad smells are extensively studied in single systems

context, nevertheless, variability smells is still a young topic [Apel et al., 2013].

 Variability smells are more useful when it is known: what they are, how to detect

and how to solving them. Metric-based detection strategies and refactoring methods can

be used to detect and solving variability smells, respectively [Fowler et al., 1999]. In

addition, to use metric-based detection strategies it is necessary to know about metrics

and define thresholds for each metric in which composes the detection strategies. This

work aims to answer many questions related to these topics. And, for this we defined a

strategy based on GQM (goal-question-metric) method [Basili et al., 1994]. In other

words, we performed a task-oriented strategy. Figure 1 presents the nine tasks that we

done, ongoing, or have to do in the Master degree period.

Figure 1. Tasks in Master degree Period

 Tasks 1, 2, 3, and 4 are related to literature review and for this reason they

appear first. The other tasks are more related to comparisons, evaluations, and proposals

of something new. Tasks 1 and 2 provide a Systematic Literature Review (SLR) and an

extension to know what are the variability smells, what are the variability smell

detection strategies and what are the refactoring methods used to solve or minimize

variability smells presented on literature. Based on the literature review, we noted that

metric-based detection strategies are more common to detect variability smells.

Nevertheless, the effectiveness of metric-based detection strategies is directly dependent

on the definition of appropriate thresholds. Hence, we performed a search to find

methods to derive thresholds. More than 10 methods were found, but we observed that

the methods proposed recently are: (i) systematic, (ii) to consider the skewed

distribution of the software metric, and, (iii) to receive as input data metrics from a

benchmark of software systems. Therefore, we built a benchmark of feature-oriented

SPLs (task 4).

 Posteriorly, we performed a comparison of three methods to derive thresholds

that match the three criteria cited above (task 5). With this comparison, we noted some

desirable points in methods to derive thresholds, and as none of the found methods were

completely fitted for our purpose, we got the desirable points listed and propose a

method to derive thresholds (task 6). As three out of four methods, in spite to be

systematic, they do not provide tool support we are developing a tool able to run these

four methods to derive thresholds (task 7). At the moment, with the state of art of

variability smells, we have plans to explore two points more. These points are related to

propose better variability smell detection strategies in terms of effectiveness (task 8) and

propose variability smells to fill gaps perceived in the literature (task 9). To achieve the

tasks 8 and 9, we believe that it is necessary to know what metrics can be used to

express variability mechanisms present in SPLs. For this reason, we are performing a

SLR related to metrics proposed in the context of SPLs (task 3).

 The rest of this paper is organized as follows. Section 2 presents the

methodology and results of tasks that we done or ongoing. Section 3 describes how we

pretend to evaluate the two tasks that we have to do. Section 4 presents a brief

description of related work. Section 5 highlights the excepted contributions.

2. Literature Review and Thresholds Derivation

We performed a Systematic Literature Review (SLR) – 4 questions – [Vale et al., 2014]

and after we extended this SLR – 2 questions more – [Vale et al., 2015a] to find and

classify published work about bad smells and refactoring methods in SPLs. Our SLR

aimed to answer the following questions: (RQ1) Is the definition of a bad smell the

same in the context of SPL and single software systems? (RQ2) What were the SPLs

used in studies of bad smells? (RQ3) What are the variability smells already defined and

investigated? (RQ4) What are the strategies to identify variability smells? (RQ5) What

are the refactoring methods applied to remove variability smells? (RQ6) What

refactoring methods were used to minimize or solve an investigated variability smell?

 The answers of these questions (task 1 and 2) were based on 22 relevant work

found. We could see that bad smells is the general concept. Code and architectural

smells are divisions of bad smells (types). Hybrid smells combine architectural and code

smells. Variability smells are bad smells specific to SPLs and can be divided in parts,

such as architectural and code smells. Hence, the concept of bad smell is the same for

single systems and SPLs (RQ1). We found 23 SPLs (RQ2), we identified 91 variability

smells (RQ3), 7 types of variability smell detection strategies for 63 variability smells

and 46 of the detection strategies are metric-based detection strategies (RQ4), and 106

refactoring methods (RQ5). Additionally, we matched 31 refactoring methods with 32

variability smells (RQ6).

 Related to task 3, we are performing a SLR aiming to provide a catalogue of

software metrics proposed in the SPL context. Related to task 4, we searched for

feature-oriented SPLs in papers and well-known repositories. In total, we found 64 SPLs

to compose our benchmark, in which 38 are different. The step-to-step filtering is

further explained on the project website
1
. The benchmarks were built to task 5 in which

we performed an evaluation of methods to derive thresholds. In the past few years,

thresholds were calculated by software engineers experience and/or using a single

system as a reference [Chidamber and Kemerer, 1994; Spinellis et al., 2008]. Recently,

this concept has been changing and thresholds have been calculated considering three

points [Alves et al., 2010; Ferreira et al., 2012; Oliveira et al., 2014]: (i) well-defined

methods (systematics), (ii) methods that consider the skewed distribution of software

metrics, and, (iii) derived from benchmarks.

 We performed a comparison to find a method to define metric thresholds able to

be used in detection strategies (task 5) [Vale et al., 2015b]. For this, we derived the

thresholds using three methods [Alves et al., 2010; Ferreira et al., 2012; and Oliveira et

al., 2014] found that follows the three points cited above. The thresholds were evaluated

individually and by applying the thresholds in a detection strategy proposed to identify

God Class in SPLs in terms of recall and precision. God Class is defined as a class that

knows or does too much in the software system [Fowler et al. 1999]. As results, none of

the methods excelled in the evaluations and we listed eight desirable points in methods

to derive thresholds. The desirable points are: (i) to be systematic; (ii) to derive

thresholds in a step-wise format; (iii) to be weak dependent with the number of systems;

(iv) to be strong dependent with the number of entities; (v) not correlate metrics; (vi) to

calculate upper and lower thresholds; (vii) to provide representative thresholds

independent of metric distribution and (viii) to provide tool support. These desirable

points were used as motivation for propose of a new method (task 6).

 The proposed method tries to get the best of each method from the comparison

and fits all desirable points, except the tool support which we are developing (task 7).

The tool is being designed to run the three methods compared and the proposed method.

To evaluate the derived thresholds from the proposed method, we choose a method used

(not proposed) to derive thresholds in the context of SPL [Lanza and Marinescu, 2006]

(baseline), though it does not consider the skewed distribution of software metrics. For

the evaluation we followed similar steps to the previous evaluation, although we added

an additional detection strategy to Lazy Class. Lazy Class is defined as a class that

knows or does too little in the software system [Fowler et al. 1999]. The results show

the proposed method is more effective to detect smells when compared with baseline.

1
 http://labsoft.dcc.ufmg.br/doku.php?id=%20about:spl_list

3. Detecting and Proposing Variability Smells

We aim to propose variability smell detection strategies more efficient than traditional

ones (task 8) and new variability smells not yet described in the literature (task 9). For

tasks 8 and 9, we think that it is better first to know what are the metrics proposed in the

context of SPL and what is the mechanisms those metrics quantify (finish task 3).

 Then, for task 8, we want to propose variability smell detection strategies and

compare the effectiveness with traditional ones. For the evaluation, we are going to use

the built benchmarks of feature-oriented SPLs and the proposed method to derive the

thresholds for the metrics that we are going to use. The evaluation is expected to be in

terms of effectiveness using recall and precision in target SPLs.

 For task 9, we found some gaps in the literature and we use a strategy based on

the other authors [Lanza and Marinescu, 2006; Abilio et al., 2015] that proposed bad

smells that present at least (i) the description of the proposed variability smells; (ii)

which artifact they are applied on (such class and method granularity); (iii) the impact of

these variability smells in the SPL; and, (iv) how to detect these smells. Additionally,

we want to analyze the source code of some SPLs to see if the undesired properties that

we think that are a problem really occur and whether they are problems.

4. Related Work

Several studies can be cited as related with this work. Alves et al. (2010), Ferreira et al.

(2012), and, Oliveira et al. (2014), proposed a method to derive thresholds in the context

of object-oriented single systems. Differently, our method is designed in the context of

SPL. Lanza and Marinescu (2006), Apel et al. (2013), and, Abilio et al. (2015) proposed

bad smells. The first one presents 23 bad smells designed to Object-Oriented single

system that are reference for the following work. The other studies proposed bad smells

for SPLs and are part of our catalogue. Therefore, our work can be considered a

continuation of the literature.

5. Intended contributions

As contributions, we expect to have 3 catalogues of bad smells, refactoring methods,

and detection strategies for SPLs [Vale et al., 2014; Vale et al., 2015a]. In addition, we

have already created a benchmark composed by 64 SPLs, a comparison of methods to

derive thresholds [Vale et al., 2015b], and a method proposed for the same purpose

[Vale et al., 2015c]. We are currently developing a tool to support four methods to

derive threshold, including our own method and a Systematic Mapping related to

metrics for SPLs. As future plans up to the end of the dissertation, we want to propose

detection strategies more efficient than traditional ones and new variability smells for

fill the gap found in feature-oriented software product line literature. Therefore, the

dissertation aims to present a technically sound contribution in the three main steps of

variability smells solving (description, detection, and refactoring), although the

dissertation focusses on the first two steps.

Acknowledgments

This work was partially supported by CAPES, CNPq (grant 485907/2013-5), and

FAPEMIG (grant PPM-00382-14).

References

Abilio, R. et al. (2015) “Detecting Code Smells in Software Product Lines - An

Exploratory Study”. In: Int'l Conf. on Information Tech.: New Generations (ITNG).

Alves, T.L., Ypma, C., and Visser, J. (2010) “Deriving Metric Thresholds From

Benchmark Data”. In: Proc. of 26th Int. Conf. on Soft. Maint. (ICSM), pp. 1–10.

Apel, S., Batory, D., Kastner C., and Saake, G. (2013) “Feature-Oriented Software

Product Lines: Concepts and Implementation”. Springer, p.315.

Asikainen, T., Mannisto, T., and Soininen, T. (2006) “A Unified Conceptual Foundation

for Feature Modelling”. In: 10th Int'l Soft. Product Line Conf. (SPLC), pp.31-40.

Basili, V., Caldiera, G., Rombach, H. (1994) “Goal Question Metrics Paradigm”.

Encyclopedia of Software Engineering, pp. 528-532.

Chidamber, S.R., and Kemerer, C.F. (1994) “A Metrics Suite for Object Oriented

Design”. IEEE Transactions on Soft. Eng., vol. 20, Issue 6, pp. 476–493.

Ferreira, K. Bigonha, M., Bigonha, R., Mendes L., and Almeida, H.. (2012) “Identifying

Thresholds for Object-Oriented Software Metrics”. J. of Syst. and Soft., pp. 244–257.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999) “Refactoring:

Improving the Design of Existing Code”. Addison-Wesley Professional.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990)

“Feature-Oriented Domain Analysis (FODA) - Feasibility Study”. SEE Tech. Report.

Kastner, C., Apel, S. and Batory, D. (2007) “A Case Study Implementing Features

Using AspectJ”. In: 11th Int'l Soft. Product Line Conf. (SPLC), pp.223-232, 2007.

Lanza, M., Marinescu, R. (2006) “Object-Oriented Metrics Practice”, Springer, p.205.

Oliveira, P., Valente, M., and Lima, F. (2014) “Extracting Relative Thresholds for

Source Code Metrics”. In proc. of CSMR, pp.254-263.

Pohl, K., Bockle, G., and Linden, F. J. V. (2005) “Software Product Line Engineering:

Foundations, Principles, and Techniques”. Berlin: Springer, p.490.

Spinellis, D. (2008) “A Tale of Four Kernels”. In Proc. of ICSE, pp. 381–390.

Vale, G. et al. (2014) “Bad Smells in Software Product Lines: A Systematic Review”.

In: Brazilian Symp. on Soft. Components, Arch. and Reuse (SBCARS), pp. 84-93.

Vale, G., Abilio, R., Santos, I., Figueiredo, E., Costa, H., and Almeida, E. (2015a) “Bad

Smells in Software Product Line: A Systematic Review”. Submitted to: Journal of

Systems and Software (JSS).

Vale, G., Albuquerque, D., Figueiredo, E., Garcia, A. (2015b) “Defining Metric

Thresholds for Software Product Lines: A Comparative Study”. In: 19th Software

Product Line Conference (SPLC).

Vale, G., and Figueiredo, E. (2015c) “A Method to Derive Metric Thresholds for

Software Product Lines”. In: 29th Brazilian Symp. on Soft. Eng. (SBES).

Weiss, D. M. and Lai, C. T. R. (1999) “Software Product-Line Engineering: A Family-

Based Software Development Process”. Addison-Wesley.

