
Test-based SPL Extraction: An Exploratory Study
Alcemir Santos1, Felipe Gaia2, Eduardo Figueiredo1, Pedro Santos Neto3, Joao Araujo4

1 Universidade Federal de Minas Gerais (UFMG) - Minas Gerais - Brazil
2 Universidade Federal de Uberlandia (UFU) - Minas Gerais - Brazil

3 Universidade Federal do Piaui (UFPI) - Piaui - Brazil
4 FCT/CITI, Universidade Nova de Lisboa (UNL) - Lisboa - Portugal

{a/cemir, figueiredo}@dcc.ufmg.br, fe/ipegaia@mestrado.ufu.br, pasn@ufpi.edu.br, joao. araujo@fct.un/.pt

ABSTRACT
Many software systems have been developed as single products

before Software Product Lines (SPLs) have emerged. Although

some promising approaches have been proposed, extracting an

SPL from existing software products is still expensive and time

consuming. This paper presents an exploratory study that relies on

a test-based SPL extraction from systems already developed. We

aim to evaluate testing as the main mean to locate feature code

and different sorts of existing artifacts to support the test-based

location. We conduct two case studies starting from the derivation

of the SPL feature model to the feature code location. Our

preliminary results indicate (i) good rates of precision for feature

seed location, where seed means a small portion of the feature

code that allows the identification of the remaining portion, and

(ii) good rates of recall for locating the whole feature code.

Categories and Subject Descriptors
D.3.13 [Reusable Software]: Domain Engineering.

General Terms
Experimentation.

Keywords
Product line extraction, feature location, software testing.

1. INTRODUCTION
Nowadays, there is an increasing awareness of the benefits in

developing reusable software as part of product families. As a

result, software industry is guiding its effort to develop their

products based on Software Product Line (SPL) concepts [3, 11].

In fact, several large software companies have already adopted

SPL engineering to develop their products for more than a decade

[11, 14]. However, even before SPL has gained popularity, many

software systems had already been developed. This scenario leads

to a racing to turn existing software into SPLs. However, the

complete extraction of an SPL from existing software systems is

expensive and time consuming [4] and error-prone without proper

guidance [10]. Furthermore, software systems usually have high

coupling [15] and, consequently, code of different features is

tangled. Each feature represents an increment in functionality

relevant to some stakeholders [20].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC'J3, March 18-22,2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ... $10.00.

1031

Several research studies have proposed refactoring methods based

on static analysis to extract an SPL from existing code [16, IS].

However, code refactoring demands high level of domain

knowledge of the target systems [S]. In addition, these methods

usually fail because they overlook other available artifacts besides

code. In fact, even if variability is implemented at source code

level, other enclosed software artifacts, such as requirements

documentation and test suites, have also to be taken into account.

Some work [5, 9] has used dynamic methods to support SPL

extraction. For example, Eisenbarth and others [5] mapped

features to source code when a visual behavior activated by a user

was detected. Ghanam and Maurer [9] also mapped executable

acceptance test to feature models. Following this pathway, this

paper accomplishes an exploratory study on dynamic SPL

extraction based on test coverage and existing artifacts of an

already developed system. The study includes a four-step

environment setting to support SPL extraction. In the first step, a

feature model is extracted based on heuristics applied to existing

requirements and design documents. In the second step, we

performed a mapping from requirements to features. In the third

step, the requirements to feature mapping is expanded to also

indicate test suites that exercise specific requirements (and

consequently features). Finally, in the fourth step our study

accomplishes an analysis of novel strategies to locate and annotate

the source code that implements each variable feature of the SPL.

An innovative flavor of these strategies is the use of integration

tests to support the feature location.

We decided to reuse software testing in this study because other

studies previously relied on testing reuse [13]. In addition,

software tests are usually available on software systems. There are

different classifications of software testing. Tests can be classified

by their target: one module (unit), several grouped modules

(integration), and the entire system (system) [1]. In this paper, we

use integration tests because they relates different modules of the

system that often implement different SPL features.

The exploratory study was conducted with two applications: a

small implementation of a Web-based library management system

and an interactive Web store system. The preliminary assessment

indicated promising results. In terms of feature seed location,

precision values were high, indicating that seeds could be located

using testing. A seed means a small portion of the feature code

that allows the identification of the remaining portion [21]. In

terms of the whole feature code location, where feature code

means all the lines of code that belongs to a feature [21], recall

values were high. This result indicates that the whole feature code

can also be found. However, we had high hate for false positives.

Therefore, we observed that dynamic feature code location should

be carefully used for this purpose.

This paper is organized as follows. Section 2 presents the study

settings, including research questions, target systems, and the

evaluation procedure. Section 3 presents an environment setting

to support the data collection for the test-based SPL extraction

evaluation presented in Section 4. Section 5 discusses some

related work. Finally, Section 6 draws some conclusions and

points out directions for future work.

2. STUDY SETTINGS

2. 1 Research Questions
Our main goal is to evaluate the ability of integration testing to

support the SPL extraction. To achieve this goal, the study aims to

answer the following questions:

RQ1. Is integration testing effective to locate a feature seed?

RQ2. Is integration testing able to find the feature code?

We analyze how much feature code is discovered by testing.

Moreover, we aim to analyze how testing coverage behaves when

looking for different kinds of features. For example, we

investigate if there are some differences in locating the feature

code of the more general features against feature more specifics.

2.2 Target Systems
Our analysis embraced two Web-based systems of different

domains. Both systems are written in Java and provide the

artifacts needed to perform our study. We spent 2-3 weeks to

perform each case study.

The first target system used in this study is a library management

system of approximately 1 KLOC, called JBook. Its source code is

available [19]. It is used to manage the library on a local Brazilian

software company and was developed by their developers. On this

system, users may play three different roles: reader, librarian and

administrator. While readers and librarians have access

restrictions to some functionalities, administrators are allowed to

do all actions available in JBook. This system allows users,

depending on their roles: (i) to register new publications and its

exemplars; (ii) manage the loans, and (iii) notify new acquisitions

and retum deadlines by sending emails.

The second target system, called WebStore [6], has also

approximately 1 KLOC and its source code is available. It was

designed for academic purpose focusing in the major features of a

real web store. These features allows the user to insert products,

view them by categories and date, as well as perform a checkout

and finish the order with different payment methods, such as

DEFAULT PAYMENT, PAYPAL and BANKSLIP.

We choose small systems as case studies due to a manual

annotation of the features used in the evaluation. Additionally, the

exploratory nature of this work favors small systems instead of

bigger open-source software project. All files used are available at

the study website [24].

2.3 Reference Feature Code
In order to evaluate our results, we ask the developers of JBook

and WebStore (experts on these applications) to annotate their

source code. For each system, six of the identified features

(Section 3.1) were annotated. The experts used a shadowing

technique [7] for annotating all feature code. Six features of

JBook were annotated: LOAN, LOAN REQUEST, LOAN REpORT,

1032

PUBLICATION, EXEMPLAR and USER. The six features annotated for

WebStore were PAYMENT, PAYPAL, BANKSLIP, DISPLAY,

CHECKOUT, and CONTENT MANAGEMENT.

2.4 Evaluation Procedure
We define two strategies for feature location, each one with a

specific purpose. The first one intends to identify just a seed for

the feature and the other focuses on the identification of the entire

(or the most part) of the feature code. To implement both

strategies we have used set operations applied to the lines of code

covered by each test suite. We use the intersection set operation to

address the seed identification strategy, since it only requires a

small fraction of code. That is, the intersection of lines of code

executed by all tests of the same feature. On the other hand, we

use the union set operation to identify most of feature code to

address the feature code strategy. That is, the union of lines of

code executed by all tests of the same feature.

To quantify the result of each strategy we use precision and recall

metrics presented below. In the metrics, a true positive (TP)

happens when the line was executed by a test and was considered

relevant. A true negative (TN) happens when the line was not

executed and the line was not considered relevant. Afalse positive

(FP) happens when the line was executed and the line was not

considered relevant. And finally, false negative (FN) happens

when the line was not executed and the line was considered

relevant. Finishing this process, we build a spreadsheet with the

line accounting for calculating the metric values. Figure 1

illustrates these metrics. The set A represents the executed lines

and the set B represents the lines that belong to feature.

Precision: this metric measure the fraction of the retrieved

lines considered relevant to our purpose.

Recall: this metric measure the fraction of the lines relevant

successfully retrieved.

not executed
lines (TN)

Precision: TP I
TP+FP

Figure 1. Definition of precision and recall.

The experimental data was collected as follows. After executing

the selected test suites and annotating the execution trace of the

tests we use the above mentioned feature location strategies to

reach a final set of annotated code by feature. Since we have six

features of each target system, we got twelve final code sets, six

code sets reached by the feature seed strategy addressing JBook

and six by the feature code strategy addressing WebStore.

After that, we made a paired comparison between the code sets.

Each pair was composed by the reference feature code set and a

final code set of covered code identified by our approach. The

comparison was made for each feature; leading us to another

twelve code sets with lines identified as true positives, true

negatives, false positives, and false negatives. We show the

analysis of the data collected for both feature seed and code

locations strategies in the next sections.

Step 1 Step 2 Step 3
� 4 Annotated Artifacts Extraction Mapping Mapping Code

A
s� � s�

" ! 1 " t 1

�
t 1 F� F'JI F 3J F:d F�-=J F3

:=!

;hJ

F3�
Fn ", � �� R 1 R2 R3 R4 R5

Tf� �
T!J T�

(a) (b) (c) (d) (e)

Legend" F: Feature R: Requirements T: Tests

Figure 2. Test-based feature location procedure.

3. TEST-BASED SPL EXTRACTION
We followed the same procedures to evaluate both target systems

(Section 2.4). This section presents the environmental settings that

use available software artifacts to support test-based feature code

location. More precisely, this settings was used not only to extract

a partial feature model from requirements and design documents

but also to locate and annotate the source code of relevant

features. One of the novel characteristics of this approach is the

reuse of integration tests for the feature location process.

Figure 2 illustrates the environmental setting in our evaluation.

The grey arrows from the left-hand side to the right-hand side

indicate the successive steps of the study. The output of each step

is on the square identified by (b), (c), (d) and (e). Square (a)

illustrates input artifacts of the study. In Step I, we collected the

available artifacts of each system in order to build a partial feature

model. Step 2 maps system requirements to features. Square (c) in

Figure 2 shows the result of this second step. The requirements

are represented by the squares identified by Rj (j= 1 .. 5). Note that

a feature can be mapped to more than one requirement. For

instance, FI is mapped to requirements RI and R2. In Step 3, test

suites are associated to features using the mapping of the previous

step. Square (d) shows the result of the third step. The tests suites

are represented by the squares identified by Tk (k= 1 .. 5). A test

suite can be mapped to more than one requirement. For instance,

test suite Tl and T4 are mapped to the requirements Rl. In the

same way, a requirement can also have more than one test suite

mapped to. For instance, test suites T2 and T3 are mapped to the

requirement R3. Finally, in Step 4, we execute the set of tests

attached to a feature in order to locate its code. Once the code was

executed, we collect data for further analysis.

Examples of artifacts of systems in square (a) that we use to

generate the feature model are requirements, architecture / design

models, and tests suites. These artifacts are commonly developed

in the software development process and, so, they allow the

replication of this study to most of the developed systems,

regardless of the specific development process adopted.

•
Publir;;<llion

.--- 0
Register Report

E�emplar � Thumb Index Notify UlXtf

JBook·SPl

loan
<5

Request

User
--0 -----.
CallC9l Process User

�.
U:>er Action Validate User Option

3.1 Building the Feature Model
This section describes some heuristics which belong to Step I

(Figure 2) aiming to support the feature model derivation.

Although these heuristics can be adapted and applied to different

sorts of existing requirements and design artifacts, we illustrate

them by their application to use case diagrams and descriptions of

the target systems. The heuristics, named HI-HIO, aim to identify

the features of the target system. These heuristics, briefly

described, are based on previous research work [17]. Table I

shows some examples of features extracted with the use of the

heuristics over the target systems available documentation. With

these values in hand, we analyze terms and logically organize

them in a feature model. Figure 3 shows the JBook-SPL and

WebStore-SPL partial feature model built after applying the

heuristics, some feature were hidden due to space constraints.

Table 1. Heuristics and examples of feature extracted.

Heuristics Feature Examples

HI. Identify the root feature based on]BOOK, WEBSTORE.
use cases;

H2. Identify features based on the use
JBOOK: REGISTER USER, UPDATE USER,

REGISTER EXEMPLAR, CANCEL LOAN.
case names; WEBSTORE: INSERT PRODUCT

H3. Identify features that can be JBOOK: REGISTER USER and UPDATE

grouped based on use case names; USER can be grouped by PROCESS USER;

H4. Identify features based on the "list JBOOK: CHOOSE USER ROLE; ADD,

of requirements"; UPDATE.

H5. Identify variability from use case JBOOK: NOTIFY USER.
description;

H6. Identify variability for other
JBOOK: CHOOSE USER ROLE.

WEBSTORE: ByCATEGORY and
features of the model;

WHATISNEW

H7. Identify xor alternatives;
JBOOK: ADMlNISTRATOR, READER and
LIBRARIAN.

JBOOK - USER OPTION: ADD and UPDATE.

H8. Identify or alternatives; WEBSTORE - PAYMENT: PA YPAL and
BANKSLlP.

H9. Identify requires dependencies JBOOK: VALIDATE USER DATA.
relationships in feature model;

HIO. Identify excludes dependencies In our case studies we could not identifY
relationships in feature model: any example.

WebStore-SPL

Checkout Display Payment

"b us;;.rDala �
� � �

E·mail Update User Register User ' Administrator Reader Librarian Insert Insert ByC<ltegory WhallsNewer L P,c,ypal Bankslip Product Caleg�ry_

Figure 3. A partial JBook-SPL and WebStore-SPL feature models built after analysis of documentation available.

1033

3.2 Mapping Requirements to Features
The second step of our environment setting was the mapping of

requirements to features of the previously generated feature

model. Since the use case descriptions define a list of

requirements of the system, we can also use them to attach the

identified features to requirements. In the JBook, for instance, we

have the use cases "User register" and "User password change".

These use cases and respective requirements can be easily

associated with the feature USER, as illustrated in Figure 4. For

simplification purpose, this figure represents only the use cases

abstracting their respective requirements. This step later enables

the association between features and test suites.

Jbook Test to Feature Mapping Example r ------------, r ------------ - -- - I r --- - -- - -- - ---------
: Features : : Use Cases : : Tests
: : : : : ,---------------,
: : � User reg ist e r :

I
UserValidalionsTest.java

: T T User password change " "1' UserTest.java

! ! : ! ! �=======:::; I I L....: I I I I PublicationTesLjava
:

Publication r- :"T P u bl i cation register "i'T PllblicationValidationTest.java I I I I I I ____________ � I ________________ J 1 ___________________ _
Legend: maps to c:::J g.-ouping

Figure 4. Tests associated to features through use cases.

3.3 Mapping Tests to Feature
Once we know which requirements are assigned to which features,

we can also indirectly associate integration tests with features. In

other words, the mapping from tests to features can be inferred

since (i) tests aim to find defects on the code implementing

requirements and, so, they are implicitly or explicitly linked to

requirements and (ii) requirements were mapped to the features on

the previous step (Section 3.2). In fact, although tests are not

explicitly mapped to requirements in developed systems, it is easy

to recover this mapping by tests specification. For instance, Figure

4 shows how we can associate tests to use cases. In this case, we

hide the packages where tests are located due to size constraints of

the figure. The link between tests suites and requirements as well

as the link between requirements and features allow us to exercise

a feature code by executing the corresponding integration tests.

3.4 Feature Code Annotation
After the third step above, we have test suites associated with the

features. Therefore, we can run the integration tests in order to

locate the feature code. Figure 5 shows the process executed on

this fourth step. First, we select the test suite depending on the

feature we intend to address, and then we execute it. The

execution of the test suites leads us to a set of executed code

shaded by a coverage tool. Finally, we carry on an analysis of the

code shaded to finish the location of code that implements a

feature. After repeating this process with all the features, we know

the feature code that should be used in a software product line.

Figure 5. A 4-step process to annotate the feature code.

Algorithm 1 shows a sample of the source code (shaded) that we

extracted from JBook after the execution of the

LoanReque s t Te s t integration tests. The white lines were not

executed and might not belong to the feature addressed as well as

the dark gray shaded. The light gray shaded piece of code was

executed by the test and should belong to the feature. In this case

we locate the code of the feature LOAN.

1034

Algorithm 1. An example of JBook test-based shaded code.
1 public class Loan implements Serializable{

2 private Long idi

3 private Date requestDate;

4 (..)

5 public Loan{) {

6 this.requestDate = new Date () ;

7)

8 public Long getLoanld{) {

9 return idi

lO r)

11)

4. Results and Analysis

4.1 Feature Seed Identification Strategy
This section presents the results when we identify feature seeds by

using this strategy on JBook. The feature seed identification

strategy consists of using all tests suites related to one feature

executed. We then get the seed for a feature by applying the

intersection set operation in sets of code annotated by different

tests suites. This strategy aims to identify one or more seeds for

the feature code and should be used when a seed is enough to find

the remaining feature code, i.e., using a different approach.

Figure 6 shows the result for precision in black columns and

recall values in white columns for JBook. The LOAN, EXEMPLAR,

PUBLICATION and USER features reaches precision rates above

85%. This results indicate that the annotated code is (almost)

completely dedicated to the feature implementation; i.e., very few

false positive. In the case of the LOAN REQUEST and LOAN REPORT

features, the results are not as good as expected. However, we

think these values are related to the fact that both features are

refinement of the LOAN feature. Therefore, REQUEST-specific tests

end up executing LOAN code that does not belong to REQUEST.

Similar behavior was observed for LOAN REPORT.

125%

75%
50%

0%
4%

JBook Results

Loan Report Loan Request Exemplar Publication

Figure 6. Results for feature seed identification in JBook.

Figure 6 shows that the results for recall are quite low for most

features, except for the LOAN REPORT feature. This result is

justifiable for this strategy since it discards some correctly

recovered lines of code that do not appear in the execution traces

of all feature-related tests. One exception is the LOAN REPORT

feature that reaches 68% of recall. This result might happen as it

is implemented in only two Java classes which tum its code easier

to be executed by the tests of the implementing classes.

LOAN REQUEST is a feature with the lower precision and recall

values. We deeply investigated this case and found out that two

factors impacted on the poor results of LOAN REQUEST. First, very

few test cases targets requirements associated with this feature.

Therefore, most of the feature code is never executed leading to

low recall values. In addition, LOAN REQUEST is a very specific

feature implemented by just a few lines of code. Therefore, we

observed that test-based feature location cannot easily find this

kind of specific and tiny features.

The goal of this strategy is to identify a feature seed. Therefore, in

general, a high precision in this case means that most lines of code

are relevant as a seed. On the other hand, while precision values

are reasonable to the feature seed point of view, low values for

recall explains why this strategy is not accurate to find the whole

feature code. Therefore, we next discuss the results of a approach

which tries to maximize the feature code located.

4.2 Feature Code Identification Strategy
This section presents the results of the feature code identification

in WebStore. The feature code identification strategy consists of

using all tests suites related to one feature. In this case, we apply

the union set operation of all code from different tests of assigned

to feature. This strategy aims to identify most of the feature code

and, hence, it should be used when a seed is not enough to

complete the assigned task. Our goal is to facilitate the feature

extracting by indicating a superset of the feature code.

Figure 7 shows the result of precision (black columns) and recall

(white columns). Once you implement a test case of a specific

method, it needs to execute the code that supports it, even though

this code is not directly related to the method under test.

Therefore, testing feature code with this strategy leads to many

false positives. As a result, we expect the precision values to be

low. The higher precision values, PAYMENT and CONTENT

MANAGEMENT, are exactly of the bigger features analyzed.

Although testing executes much code not belonging to these

features, their size contributes to increase the precision values.

WebStore Results
l25% 100% 100% 90% 90% 100% 80%

75%
50%
25% 11% 11%

0%
Banksllp I='avpal Fl'avment Checkout Displav Content

Management

• Prcci"iion D Rcc.:I1I

Figure 7. Results for feature code identification in WebStore.

Focusing on recall values, all features achieved more than 60%.

The worst recall was observed in the case of PAYMENT and

CONTENT MANAGEMENT. By analyzing these two features, we

realize that these lower recall values are mainly due to the size of

the features. In this case, small features are harder to be found by

the test-based approach. Similar problem was also observed in

other features due to the low number of tests available to locate

the feature code. Not always test engineers covers all code with

test cases, giving a special attention to portion of the code

classified as critics [22, 23].

Once the goal of this strategy is to identify the whole feature code,

a higher recall means that it fairly achieved its goal. That is, most

lines of code that belongs to the feature were annotated by testing.

In fact, we should use this strategy to reduce the space for

searching the feature code. For instance, our results indicate that

around 70% of the application code is not executed by tests

assigned to a feature. Therefore, someone needs to mine a feature

code in only 30% which are executed and partially annotated by

this strategy. Low precision values indicate that many false

positives remain and, therefore, post analysis is needed to

complete the extraction of the software product line.

1035

4.3 Discussion
After showing the results, we can answer our research questions.

The answer for RQl is partially, by using the strategy discussed in

Section 4.l. That is, whether integration testing can locate a

feature seed if we considered the intersection set of all code

executed by different tests of a feature. The answer for RQ2 is

also partially. It is possible to extract features using testing under

some conditions, such as high test coverage. In addition, it usually

requires some additional effort to finish the SPL extraction. The

results showed that testing coverage has a great power of feature

location with recall values over 60% for all features addressed in

both JBook and WebStore. We also achieved good precision rates

on feature seed location, with about 60% in average for all

features addressed in both case studies. Therefore, we observed

that the feature seed identification strategy shows a reliable path

to start an SPL extraction process.

4.4 Threats of validity
One limitation of this study is the size of target applications

systems. We used two small applications for the study because

larger systems could be an impediment for building the feature

code reference list used in the data analysis. The manual work to

build the reference list of feature code is another limitation of our

study. We rely on experts who must understand most of the

system code to build the oracle. Even though it was made by

experts and later revised by our team, it may contain some

assignment errors. Additionally, the integration tests must execute

the code related to the analyzed feature or, at least, small pieces of

them depending on of the test coverage. JBook has a higher

coverage than we usually find on typical systems (around 90%).

WebStore has a common coverage scenario of around 50%.

SPL is usually extracted from a set of products in the same

domain. In this paper, we took only one product application into

account. However, test suites might be available to all different

products, which mean that testing might represent a good path on

the identification of core assets, as well as, variable features in

either scenarios: a single product or multiple products.

5. RELATED WORK
The feature location aims at locating pieces of code that

implement a given set of features. Eisenbarth and others [5]

presented a semi-automatic technique to rebuild the mapping of

feature which has a visual behavior observable when activated by

the user. In addition, Antoniol and Gueheneuc [2] presents an

approach to identify features by using static and dynamic data on

object-oriented multitask systems. Poshyvanyk [12] made use of

two techniques to locate features: scenario-based probabilistic

ranking; and an information retrieval based by using latent

semantic index. So, they argued a significantly increase in the

effectiveness of the location if compared with the use of the two

techniques separately. Walkinshaw [18] combined the most

important methods to the feature implementation annotations and

built a graph with all direct paths between pairs of methods

annotated. Then, they added all the methods which could be

influenced by it. In the end, they eliminated the irrelevant

methods that were added during this process. All these works

intend to locate features on the source code to help developers in

the maintenance and evolution of legacy software. However, our

purpose is to identify the source code that implements a feature

with fine granularity in order to separate the feature code and

generates different products into an SPL.

Another closer work was done by Ghanam and Maurer [9]. They

proposed to attach acceptance tests on the feature model by using

executable acceptance tests (EAT). Each EAT were added to the

lowest level of the feature model (leaves). Their goal was to track

features in code artifacts. The assessment of their work was

qualitative. Our work is different because we generated a SPL

from legacy software systems instead of tracking the code through

the feature model. We decided to use testing on feature location

after carrying out a previous work [13]. We also promoted the test

reuse and endorsed its importance on software development.

6. CONCLUSION
This paper presents an exploratory study on the use of testing to

support the extraction of an SPL from developed software as a

single product. We conduct the extraction of the SPL since early

stages, when the feature model is created, to the identification of

code implementing each variable feature. We use two systems as

case studies, called JBook and WebStore. In addition, the study

defines novel strategies to locate and annotate the source code that

implements each variable feature of the SPL. We show some

results related to the feature identification in the case studies in

terms of precision and recall.

The results presented in this study were interesting and the test­

based technique can be considered on an SPL extraction scenario.

Additionally, based on the research questions answered (Section

4.3), we conclude that the test-based technique can reduce the

time needed for the SPL extraction by indicating either (i) a good

seed or (ii) a superset of the feature code. Besides, much of the

software developed nowadays has testing suites and this fact

reduces the costs of this approach.

In future work, we intend to automate the mapping process to

support the test-based feature location and conduct other studies

on test-based SPL extraction. We are also planning further

experiments on the relations between features and the issues

related to their size. Finally, the number of times each line was

executed by some sorts of tests could help us with valuable

information and also deserves further investigation.

ACKNOWLEDGMENTS: We would like to acknowledge

CNPQ: grants 131788/2011-6 and 485235/2011-0; F APEMIG:

grants APQ-02932-10 and APQ-023 76-11; AMPLE project and

CITI-PEst-OEIEElIUI0527/2011.

7. REFERENCES
[1] Bourque et. al. 2001. Guide to the Software Engineering

Body of Knowledge - S WEBOK. IEEE Press, USA.

[2] Antoniol, G. and Gueheneuc, Y. 2005. Feature

identification: A novel approach and a case study. Proc. of

the Int'l Conf. on Software Maint. (ICSM), pp. 357-366.

[3] Chastek, G. J., McGregor, J. D. 2008. Production Planning

in a Software Product Line Organization. Proc. of the Int'l

Software Product Line Conference (SPLC), pp. 369-369.

[4] Couto, M., Valente, M. and Figueiredo, E. 2011. Extracting

Software Product Lines: A Case Study Using Conditional

Compilation. Proc. of the European Conf. on Software

Maintenance and Reengineering (CSMR).

[5] Eisenbarth, T., et. al. 2003. Locating features in source code.

IEEE Trans. on Software Eng. (TSE), v.29, pp. 210-224.

1036

[6] Ferreira, G., Gaia, F., Figueiredo, E. and Maia, M. 2011. On

the Use of Feature-Oriented Programming for Evolving

Software Product Lines - a Comparative Study. Proc. of the

XV Brazilian Symp. of Progr. Lang. (SBLP), pp. 121-135.

[7] Figueiredo, E. et. al. 2008. Evolving Software Product Lines

with Aspects: An Empirical Study on Design Stability. Proc.

of Int'l Conf. on Software Engineering (ICSE), pp. 261-270.

[8] Fowler, M. 1999. Refactoring: Improving the Design of

Existing Code. Addison-Wesley Publishing Boston, USA.

[9] Ghanam, Y. and Maurer, F. 2010. Linking feature models to

code artifacts using executable acceptance tests. Proc. of

Int'l Software Product Line Conf. (SPLC), pp. 211-225.

[10] Kastner, C., Dreiling, A. and Ostermann, K. 2011.
Variability mining with LEADT. Technical report, Philipps

University Marburg.

[11] Muhammad A. N., Rick R. and Paul G. 2008. Agile product

line planning: A collaborative approach and a case study.

Journal of Systems and Software (JSS), vol. 81, pp. 868-882.

[12] Poshyvanyk, D. et. at. 2007. Feature location using

probabilistic ranking of methods based on execution

scenarios and information retrieval. IEEE Transactions

Software Engineering (TSE), vol. 33, pp. 420-432.

[13] Santos, 1., Santos, A. and Santos Neto, P. 2011. Reusing

Functional Testing in order to Decrease Performance and

Stress Testing Costs. Proc. of Int'l Conf. on Software

Engineering and Knowledge Eng. (SEKE), pp. 1-5.

[14] Sharp, D. 2000. Reducing Avionics Software Cost Through

Component Based Product Line Development, Proc. of

Software Product Line Conference (SPLC).

[15] Taube-Schock, C. et. al. 2011. Can we avoid high coupling?

Proc. of the European Conf. on OOP (ECOOP), pp. 25-29.

[16] Valente, M., Borges, V. and Passos, L. 2012. A Semi­

Automatic Approach for Extracting Software Product Lines.

IEEE Trans. of Software Eng. (TSE), 38(4), pp.737-754.

[17] Varela, P., Araujo, J., Brito, 1. and Moreira, A. 2011. Aspect­

oriented analysis for software product lines requirements

engineering. Proc. of ACM Symposium on Applied

Computing (SAC), pp. 667-674.

[18] Walkinshaw, N., Roper, M. and Wood, M. 2007. Feature

location and extraction using landmarks and barriers. Proc.

of the Int'l Conf. on Software Maint. (ICSM), pp. 54-63.

[19] JBook. http://sourceforge. net/projects/j bookwebl

[20] Kastner, C., Apel, S. and Kuhlemann, M. 2008. Granularity

in software product lines. Proc. of the Int'l Conf. on Software

Engineering (ICSE), pp. 311-320.

[21] Marin, M. Deursen, A. V. and Moonen, L. 2007. IdentifYing

Crosscutting Concerns Using Fan-In Analysis. ACM Trans.

of Software Eng. Methodologies (TOSEM), 17, article 3.

[22] Tassey, G. 2002. The economic impacts of inadequate

infrastructure for software testing. Planning Report. National

Institute of Standards & Technology (NIST), pp. 2-3.

[23] Binder, R. 1999. Testing object-oriented Systems - Models,

Patterns and Tools. Addison Wesley Reading.

[24] Test-based SPL Extraction.

http://www. dcc. ufing.brl-jigueiredolspll extraction

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

