
Detecting God Methods with Concern Metrics
An Exploratory Study

Juliana Padilha
1
, Eduardo Figueiredo

1
, Cláudio Sant’Anna

2
, Alessandro Garcia

3

1
Computer Science Department, Federal University of Minas Gerais (UFMG), Brazil

2
Computer Science Department, Federal University of Bahia (UFBA), Brazil

3
Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-RIO), Brazil

{juliana.padilha, figueiredo}@dcc.ufmg.br, santanna@dcc.ufba.br, afgarcia@inf.puc-rio.br

Abstract— Software metrics have been traditionally used to

evaluate the modularity of software systems and to detect code

smells, such as God Method. Code smells are symptoms that may

indicate something wrong in the system code. God Method

represents a method that has grown too much. It tends to

centralize the functionality of a class. Recently, concern metrics

have also been proposed to evaluate software maintainability.

While traditional metrics quantify properties of software

modules, concern metrics quantify properties of concerns, such

as scattering and tangling. Despite being increasingly used in

empirical studies, there is a lack of empirical knowledge about

the usefulness of concern metrics to detect code smells. This

paper goal is to report the results of an exploratory study which

investigates whether concern metrics provide useful indicators to

detect God Method. In this study, a set of 47 subjects from two

institutions have analyzed traditional and concern metrics aiming

to detect instances of this code smell in a system. The study

results indicate that elaborated joint analysis of both traditional

and concern metrics is often required to detect God Method. We

conclude that new focused metrics may be required to support

detection of smelly methods.

Keywords— Metrics; code smells; separation of concerns.

I. INTRODUCTION

The modularization of the driving design concerns is a key
factor to achieve maintainable software systems [15, 19]. A
concern is any important property or area of interest of a
system that we want to treat in a modular way [21]. However,
certain concerns, called crosscutting concerns [15], might end
up being scattered and tangled with each other. Security,
persistence, and exception handling are examples of typical
crosscutting concerns found in many software systems. The
inadequate separation of concerns degrades design modularity
and may lead to design flaws, such as code smells [6, 11, 12].
Detection of these code smells by programmers is far from
trivial and usually requires quantitative support [16, 17].

Software metrics are key means for assessing software

modularity and detecting design flaws [3, 7]. The community

of software metrics has traditionally explored quantifiable

module properties, such as class coupling, cohesion, and

interface size, in order to identify code smells in software

systems [3, 8, 16, 17]. For instance, Marinescu [17] relies on

traditional metrics to detect code smells. However, some code

smells are often a direct result of poor separation of concerns

and traditional module-driven metrics cannot detect them.

On the other side, a growing number of concern metrics
have been proposed [5, 6, 23] aiming to quantify the key
concern properties, such as scattering and tangling. Differently
from traditional metrics, concern metrics quantify properties
of concerns realized by several modules in the code [10].
Concern metrics have been applied with different purposes
and used in several empirical studies [4, 11, 13, 14]. They are
used, for instance, to compare aspect-oriented and object-
oriented programming techniques [4, 11, 13] and to identify
crosscutting concerns that should be refactored [6]. However,
we still lack empirical knowledge on the effectiveness of
concern metrics to support code smell detection.

In this context, this paper presents an exploratory study
that investigates the efficacy of concern metrics on the
identification of one code smell [12], named God Method, in a
software system. God Method represents a method that has
grown too much and tends to centralize the functionality of a
class [12]. This exploratory study involved 47 subjects, which
were divided in three groups. Subjects of each group relied on
the analysis of one of three different sets of metrics (Section
II): (i) only traditional metrics, (ii) only concern metrics, and
(iii) both traditional and concern metrics, called hybrid metrics
from now on. This study focuses on a two-dimension analysis
comparing the trade-offs on the accuracy and time efficiency
of code smell detection (Section III). To analyze the accuracy,
we compare methods identified as suspects of exhibiting the
code smell with the code smell reference list provided by the
actual developers of the system. We also assess time
efficiency based on the recorded time spent by each subject in
the experimental tasks.

Our overall results (Section IV) suggest that current
concern metrics does not always contribute to the detection of
God Method. In fact, we observed that only four concern
metrics can offer useful indicators to detect this code smell.
Other lessons learned are: (i) detection of God Method requires
joint analysis of several traditional and concern metrics, and
(ii) the use of more metrics not necessarily leads to longer
analysis. Section V discusses the study constraints. Section VI
concludes this paper and points out directions for future work.

II. BACKGROUND

This section introduces relevant background topics for this
paper. Traditional and concern metrics are presented in Section
II.A. Section II.B describes the code smell we investigate in
this study. Section II.C discusses previous work that relies on
metrics to detect code smells.

A. Software Metrics

Software metrics have played an important role in
understanding and analyzing modularity of software systems
[3, 7, 16]. For the purpose of this study, software metrics can
be divided in three sets: (a) traditional metrics, (b) concern
metrics, and (c) hybrid metrics, which includes both traditional
and concern metrics. We selected some of the most widely
used metrics to analyze in this study. The selected traditional
metrics includes object-oriented (OO) metrics proposed by
Chidamber and Kemerer [3] and well-documented metrics in
the software engineering literature [7]. Table I summarizes the
traditional metrics we used in this study. Their detailed
definitions can be found elsewhere [3, 7].

TABLE I. DEFINITIONS OF TRADICITIONAIS METRICS

Metric Definition

Coupling between

Objects (CBO)

It counts the number of classes which a class

calls methods or an access attributes.

Lack of Cohesion in

Methods (LCOM)

It counts pairs of methods that do not access

common attributes by pairs that do access.

Lines of Code (LOC) It counts the total number of lines of code.

Number of Attributes

(NOA)

It counts the number of attributes defined in a

class.

Number of Methods

(NOM)
It is the number of methods defined in a class.

Number of Parameters

in Methods (PAR)

It is the number of methods defined by each

method in a class.

Weighted Methods per

Class (WMC)

It counts the number of methods and their

parameters in a class

Cyclomatic

Complexity (CYCLO)

It counts the number of flows in a method. It

is incremented each time a branch occurs.

This paper focuses on the evaluation of concern metrics
since traditional metrics have already been studied by previous
work aiming to detect code smells [16, 17]. Concern metrics
are defined to capture modularity properties associated with the
realization of concerns in software artifacts [6, 23]. Concern
metrics rely on a mapping between concerns and code elements
[9, 11]. This mapping consists of assigning a concern to the
corresponding code elements that realize it. This study relies on
concern mappings performed by developers or domain experts
on the target system.

Table II presents a brief definition of the concern metrics
evaluated in this paper. These concern metrics focus on
quantifying the degree of concern scattering and tangling.
Concern scattering is defined as the degree to which a concern
is spread over the code elements, while concern tangling
represents the degree to which a concern is mixed up with
other concerns in a module implementation [15, 21]. A more
detailed description and discussion of these metrics can be
found elsewhere [6, 9, 13, 23]. These concern metrics were
selected for evaluation in this paper because they have
successfully been used in a number of studies related to

software modularity [6, 9, 11, 13]. However, no systematic
study has been performed to evaluate whether these concern
metrics support the detection of the God Method code smell.

TABLE II. DEFINITIONS OF CONCERN METRICS

Metric Definition

Concern Diffusion

over Operations

(CDO)

It counts the number of methods whose main goal is

to implement a concern.

Concern Diffusion

over Attributes

(CDA)

It counts the number of attributes whose main goal is

to implement a concern.

Number of Concerns

Lines of Code

(LOCC)

It counts the number of lines of code whose main

goal is to implement a concern.

Concern Diffusions

over LOC (CDLOC)

It counts the number of transition points for each

concern through the lines of code. Transition points

are points in the code where there is a “concern

switch”.

Number Concerns

per Component

(NCC)

It counts the number of concern implemented by

each class.

Number Concerns

per Method (NCO)

It counts the number of concern implemented by

each method in a class.

B. God Method Code Smell

Code smells are a mean to diagnose symptoms that may be
indicative of something wrong in the system code [12].
Previous work has shown that code smells might be found by
means of traditional metrics [16, 17]. This paper investigates
the use of concern metrics to detect one code smell, named
God Method [12]. This code smell, described below, was
chosen because previous studies have related it with poor
modularization of concerns [17].

The God Method code smell represents a method that has
grown too much [12]. In general, the longer a method is, the
more difficult it is to understand. This code smell tends to
centralize the functionality of a class [12]. In a different
perspective, we can say that God Method is a method that
implements many concerns and, so, it has many
responsibilities.

C. Metrics-based Detection of Code Smells

Metrics has been historically used to detect code smells [16,
17]. Marinescu [17] proposed the use of strategies composed of
traditional metrics for detecting code smells. His work
observed that multiple metrics are required to capture all
factors in the code smell definition. Its evaluation of code smell
detection indicates an accuracy of about 60% for most code
smells. His study relied on several traditional metrics also used
in our study, but it has not used concern metrics.

Unlike Marinescu's work, several studies have used
concern metrics to assess diverse attributes of software
systems, such as modularity [23], instability [11, 14] and error-
proneness [6, 8]. For instance, Eaddy and his colleagues [6]
have carried out three experiments to evaluate the usefulness of
concern metrics to identify error-prone modules. Other studies
[11, 14] related on concern metrics to support the comparison
of aspect-oriented and object-oriented decompositions.

Different from our work, however, these studies implicitly
assume that concern metrics are reliable indicators for their
respective aims.

III. STUDY SETTING

This study aims at evaluating the accuracy of concern
metrics to detect God Method. Our study relies on traditional
metrics as baseline. Section III.A discusses the research
questions of this study. Section III.B introduces the software
system we used, named MobileMedia [11]. Sections III.C and
III.D present the reference list of code smell and background
information for the subjects that took part in this study,
respectively. Finally, Section III.E explains the tasks assigned
to each subject.

A. Research Questions

The goal of this study is to find out whether concern
metrics are appropriate means to detect God Method.
Therefore, the general research question we aim to answer can
be formulated as follows.

Do concern metrics support God Method detection?

In order to answer this research question, we conducted an
investigation with 47 subjects. Specific questions that can be
derived from the general question are: (i) How accurate do
concern metrics perform in comparison with traditional ones to
detect God Method? (ii) Is there a specific metric that
accurately detect God Method? (iii) Is there a combination of
metrics that increase the accuracy of identifying God Method?
(iv) Can a larger set of metrics make the task of identifying
God Method more time consuming?

B. The MobileMedia System

Our study involved the last version of the MobileMedia
system [11]. This system is a software product line (SPL) for
applications that manipulate photo, music and video on mobile
devices, such as mobile phones. It is an open source project
with about 3.5 KLOC. The concerns we considered in
MobileMedia to apply concern metrics are: (a) Sorting allows
counting the number of times a particular media was viewed
by the user and sorting media by the number of views; (b)
Favorites allows the user to define a particular media as
favorite and to visualize favorite media; (c) Exception
Handling implements a mechanism to deal with events that
change the normal flow of execution; (d) Security allows
passwords to be associated with media albums; and (e)
Persistence refers to the ability of the application to retain data
between executions. This system was selected because it has
been previously used in other modularity-related studies [4, 8,
11]. In addition, we have access to its developers and
otherwise experts and, so, we were able to recover a reference
list of its actual code smells.

C. God Method Reference List

Before conducting the study, we performed a systematic
code analysis of MobileMedia aiming to determine which
methods are God Methods (Section II.B). In addition to
ourselves, we also relied on two experts in this system to help

us building a reference list for each analyzed code smell. These
experts participated on the development, maintenance, or
assessment of the system. Our goal was to detect actual
instances of God Method in MobileMedia. Table III presents
the seven methods in the reference list for this code smell.

TABLE III. GOD METHOD REFERENCE LIST

Methods smelling God Method

MainUIMidlet.startApp MediaListController.showMediaList

AlbumController.handleCommand MusicPlayController.handleCommand

MediaController.handleCommand PhotoViewController.handleCommand

MediaController.showImage

D. Background of Subjects

This study involved 47 subjects from two different
institutions. Subjects from the first institution were 22
undergraduate and 15 post-graduated (Msc and PhD) students.
Subjects from the second institution were all 10 post-graduated
(Msc and PhD) students. The study was performed using the
OO design of MobileMedia. We organized subjects in such a
way that each group worked only with one set of metrics:
traditional metrics, concern metrics, or hybrid metrics. Subjects
were grouped trying to balance their background knowledge.
As a result, all 47 subjects detected God Method, but using
different sets of metrics. Further details about the distribution
of subjects are available at the project website [1].

Before start running the experiment, we used a background
questionnaire to acquire previous knowledge of each subject.
Table IV summarizes knowledge that subjects claimed to have
in the background questionnaire. They answered questions
about their previous experience with respect to Class Diagram,
Java Programming, Software Metrics, and Work Experience.
Subjects are named S1 to S47. The last three columns in Table
IV show the subjects who claimed to have knowledge in a
particular skill. There are subjects that do not appear in a row
because they do not have experience in that particular topic.
For instance, the following subjects do not have work
experience: S1, S21, S23, S32, S36, S43, S44, and S45.

TABLE IV. BACKGROUND DATA SUBJECTS

 Traditional Concern Hybrid

K
n

o
w

le
d

g
e
 Class Diagram S1-S16 S17-S32 S33-S47

Java Program. S1-S16 S17-S32 S33-S47

Work Experience S2-S16
S17-S20, S22,

S24-S31

S33-S35, S37-

S42, S46, S47

Measurement S1-S16 S17-S32 S33-S47

We can observe in Table IV that all subjects have at least
basic knowledge in Class Diagram, Java programming, and
measurement. In fact, we asked subject to indicate their level of
knowledge by choosing one of the following options: none,
few, moderate, and high experience (details at [1]). However,
after analyzing the results, we observe that the level of
knowledge does not have a high impact on the main
conclusions. Therefore, we do not control this variable in this

study. We only use this data to make a fair distribution of
subjects among the groups of metrics.

E. Experimental Tasks

The study was preceded by a 30-minute training session to
allow subjects to familiarize themselves with the evaluated
metrics and the target code smell. Each subject had to detect
God Method instances. After the training session, each subject
received a document containing: (i) a brief explanation and a
partial view of the system design as a class diagram and (ii) a
description of the concerns involved in the respective analyzed
system. The document also described steps and guidelines that
subjects should follow, the questions they should answer, and
information they should register.

In addition, we provided subjects with the results of the
metrics in the respective system under analysis. In order to
identify God Methods, each group of subjects (traditional
group, concern group or hybrid group, for short) only had
access to the results of metrics they were assigned to. Subjects
have no access to the system source code. We also asked each
subject to explain which metrics were useful for detecting the
code smell and which ones were not useful.

IV. RESULTS AND ANALYSIS

This section presents the results of our experiments. Section
IV.A introduces two metrics, recall and precision, we used in
the analysis of the results. Section IV.B discusses joint analysis
of traditional and concern metrics performed by subjects.
Section IV.C analyzes the accuracy of concern metrics
compared to traditional metrics. Section IV.D tries to uncover a
specific metric that seems most appropriate to detect this code
smell. Section IV.E focuses on combinations of metrics.
Finally, Section IV.F draws an analysis of time per set of
metrics.

A. Recall and Precision

We rely on three metrics, namely True Positives (TP), False
Positives (FP), and False Negatives (FN), collected from data
that subjects provided us. True Positives and False Positives
quantify the number of correctly and wrongly identified code
smells by a subject. False Negatives, however, quantify the
number of code smells a subject missed out. Based on these

metrics, we quantify recall and precision, presented below, to
support our analysis. Recall (R) measures the fraction of
relevant methods listed by a subject. Relevant methods are
methods that appear in the reference list. Precision (P)
measures the ratio of correctly detected code smells by the total
methods a subject listed.

Recall (R) =
TP

TP + FN
Precision (P) =

TP

TP + FP

We focus our discussion mainly on recall because it is a
measure of completeness. That is, high recall means that the
subject was able to identify most code smells in the system.
High precision, on the other hand, means that a subject
indicated more relevant (TP) than irrelevant (FP) code smells.
For code smell detection, a high number of missed code smells
(false negatives) are worse than a high number of incorrect
ones (false positives) because the false positives are revealed
by the inevitable manual code inspection.

B. Joint Analysis for God Method Detection

Table V presents the overall results for the God Method
detection. Rows in this table present three pieces of data:
Recall (R), Precision (P), and the Time (T) in minutes used by
subjects to complete their tasks. In total, 47 subjects had to
identify God Method in the target system.

Data in this table shows that subjects in the traditional and
hybrid groups achieved better results in terms of recall than
subjects in the concern group. This result suggests that concern
metrics when used in isolation do not offer appropriate means
to detect God Method. Only one subject (S25) in the concern
group scored more than 50% of recall. This performance is
much worse than what the traditional and hybrid groups
achieved; in average, they scored 65% and 55% of recall,
respectively. In fact, this result is not a surprise since the God
Method definition explicitly says about size and cohesion -
attributes easily captured by traditional metrics.

However, we also observed that the concern metrics NCO,
LOCC, NCC, and CDLOC were recurrently used by subjects
of the hybrid group and they achieved high recall rates (Section
IV.E). For instance, S42 scored 86% of recall and used LOC,
PAR, and NCC. Similarly, S33 used LOC, PAR, NOO, and

TABLE V. RESULTS FOR GOD METHOD CODE SMELL

Traditional Metrics

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 Avg

Recall (%) 71% 57% 71% 71% 57% 71% 0% 86% 71% 71% 57% 86% 71% 71% 57% 71% 65%

Precision (%) 100% 67% 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 71% 100% 57% 71% 85%

Time (m) 11 13 9 13 14 7 10 6 10 15 7 15 7 8 12 7 10

Concern Metrics

Subjects S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 Avg

Recall (%) 14% 0% 0% 29% 0% 43% 29% 14% 57% 14% 43% 29% 0% 43% 29% 0% 22%

Precision (%) 100% 0% 0% 33% 0% 60% 50% 25% 100% 25% 100% 40% 0% 75% 0% 0% 38%

Time (m) 15 10 23 24 14 4 9 5 8 4 5 10 12 16 9 15 11

Hybrid Metrics

Subjects S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 Avg

Recall (%) 71% 43% 57% 57% 86% 29% 43% 14% 57% 86% 57% 71% 43% 57% 57% 55%

Precision (%) 100% 38% 100% 100% 100% 50% 100% 33% 100% 100% 100% 100% 38% 100% 100% 84%

Time (m) 13 15 8 20 10 5 6 3 12 14 7 8 9 11 14 10

NCO to score 71% of recall. Therefore, we concluded that joint
analysis of both concern and traditional metrics seems to also
succeed in detecting this particular code smell.

C. Analysis of the Concern Metrics

The main goal of this paper is to evaluate the effectiveness
of concern metrics to detect God Method. To fulfill this goal,
we analyze in this section whether concern metrics succeeded
in detecting God Method instances. As discussed in Section
IV.B, we observed that four concern metrics (NCO, LOCC,
NCC, and CDLOC) seem helpful when used together with
traditional metrics to detect God Method.

The accuracy of the metric suite is largely dependent on
the adequacy of each metric to quantify a property explicitly
mentioned in the code smell definition. For instance, God
Method is characterized by “a complex algorithm” [12] and
“the realization of multiple responsibilities” [20]. While the
first property is directly mapped to traditional metrics, the
second one is better captured by concern metrics. This
probably explains why many subjects using the hybrid metrics
achieved good results for God Method detection.

D. Analysis of Specific Metrics

This section aims to identify a specific metric that may
accurately detect the God Method. As explained in Section
III.E, subjects reported the metrics they considered useful for
God Method. Based on their answers, we analyze in this
section the metrics that were considered useful to detect God
Methods.

We analyzed the metrics that were considered useful to
detect God Method by at least five subjects, as presented in
Table VI. Rows of this table show the number of subjects that
used each metric and the average of recall of these subjects.
We also restricted our analyses to metrics with average of
recall higher than 40%. The traditional metrics considered
more useful were LOC and CYCLO. They were also those
metrics that presented the highest recall rate: 64% and 63%,
respectively. Another traditional metric with recall higher than
63% was PAR, aimed at quantifying the number of parameters
in method signatures.

TABLE VI. METRICS CONSIDERED USEFUL FOR GOD METHOD

Metrics LOC CYCLO NCO LOCC PAR NCC CDLOC

Subjects

who used
27 18 15 10 9 6 5

Average of

recall (%)
64% 63% 53% 47% 63% 41% 46%

Four concern metrics were considered useful by 5 subjects
or more: NCO, LOCC, NCC, and CDLOC. The metric NCO,
aimed at computing the number of concerns in operations, was
the concern metric that was used more often by the subjects.
This concern metric was the one that presented the highest
average recall, 53%, among subjects who used it. This seems
to be an intuitive result as method is the locus of measurement
for this metric and, in fact, the code smell is a structural
problem at the method level. However, other three concern
metrics at the class level were also considered useful: LOCC
(recall of 47%), NCC (recall of 41%), and CDLOC (recall of
46%).

E. Combined Use of Metrics

In this section, we analyze possible combinations of
metrics that when used together might be useful to detect
specific God Method instances. To determine which metrics
were used together to detect a code smell, we rely on an
analysis of subjects who used the same metrics and scored
higher in terms of recall.

In this God Method code smell analysis, we filtered
subjects by considering only those who achieved more than
40% of recall. We observed some cases of metrics that were
successfully used together. For instance, the combinations of
LOC with CYCLO were used by 17 subjects that achieved
more than 40% of recall. In addition, the concern metrics
LOCC and NCO also succeed together. This combination was
used by five subjects. Four subjects had the best performance
in detecting God Method instances with 86% of recall each.
They are (i) S2 and S37 using LOC and CYCLO; (ii) S12
using LOC, NOO, and PAR; (iii) S42 using LOC, PAR, and
NCC.

F. Analysis of Time Efficiency

This section focuses on analyzing the time spent by
subjects to detect God Method. Figure 1 shows data of recall
(x-axis) and the time spent in minutes (y-axis) by each subject
to detect this code smell. Each mark in this chart indicates a
subject, but different symbols are used to distinguish the
groups of metrics subjects worked with.

Data in Figure 1 help us to answer the question of whether
a larger set of metrics can make the task of identifying God
Method more time consuming (Section III.A). Note that,
subjects in the hybrid group had to analyze a larger set of
metrics, since they were provided with all 14 traditional and
concern metrics (Section II.A). It is interesting to observe that,
despite analyzing more data points, subjects in the hybrid
group do not take longer to conclude their tasks. In fact,
subjects in the concern group spent, in average, 11 minutes,
against 10 minutes in both the hybrid and traditional groups.

Fig. 1. Analysis of time efficiency for God Method

A careful analysis of Figure 1 also suggests that usually
the longer the analysis, the better the results subjects achieved
in terms of recall. This result can be confirmed by the fact
that, most subjects who took more 10 minutes to analyze the
data scored more than 50% of recall, regardless of the metrics
they used. On the other hand, subjects using fewer metrics,
i.e., in the concern metrics, were not time efficient. Therefore,

we confirmed that the God Method detection requires careful
analysis of many metrics, as indicated by the superiority of
traditional and hybrid groups.

V. STUDY CONSTRAINTS

The conclusions obtained here are restricted to the
involved metrics, code smells, and the software system. These
limitations are typical to exploratory studies like ours. We
recognized these limitations, but our study fills the gap in the
literature by reporting original analysis on whether the use of
concern metrics is worthy for detecting the God Method code
smell. Additionally, this paper describes the experimental
framework that can be used in further replications of this
study.

The accuracy of concern metrics depends on how accurate
was the mapping (assignment) of concerns to code elements.
Fortunately, we observed in a previous study [9] that, apart
from Concern Diffusion over Lines of Code (CDLOC), the
mapping process does not significantly impact on the concern
metrics assessed in this paper. In addition, we relied on
concern mappings produced by the original developers in
order to mitigate this threat. Whether the concern mapping
was fully correct or not, it just reflects how concern metrics
would be used in practice.

VI. CONCLUSIONS AND FUTURE WORKS

The evaluation of software modularity is largely dependent
on the availability of metrics that accurately detect code
smells. Concern metrics are increasingly being used in
empirical studies [4, 11, 13, 14]. Our study aims at examining
the effectiveness of concern metrics to detect a code smell.
Our general results revealed that some concern metrics might
be useful to detect God Method.

We also investigated which specific metrics are more
suitable to detect the analyzed code smell. In general, the
results indicated that the accuracy of each metric suite is
largely dependent on the adequacy of each metric to quantify a
property explicitly mentioned in the smell definition. In
particular, we observed that four concern metrics are able to
help detecting God Method when used together with other
traditional metrics.

This study represents a first stepping-stone towards the
evaluation of concern metrics to detect code smells. We are
currently working on strategies to detect this code smell (and
others) based on the concern and traditional metrics we found.
For future work, we plan to create and/or evaluate new metrics
that better capture facets in others code smells.

ACKNOWLEDGEMENTS

This work was partially supported by Capes/Proex grants
2566/2012, FAPEMIG grants APQ-02376-11 and APQ-
02532-12, and CNPq grant 485235/2011-0.

REFERENCES

[1] Data of the Experiment with Concern Metrics, 2013:
http://www.dcc.ufmg.br/~juliana.padilha/LaWasp2013/

[2] Carneiro, G. F. et al. “Identifying Code Smells with Multiple Concern

Views”. In Proc. of the Brazilian Symposium on Software Engineering

(SBES), 128-137, 2010.

[3] Chidamber, S. R. and Kemerer, C. F. “A Metrics Suite for Object
Oriented Design”. Transactions on Software Engineering (TSE), 1994.

[4] Conejero, J. M. et al. “On the Relationship of Concern Metrics and

Requirements Maintainability”, Inform. and Soft. Tech. (IST), 2011.

[5] Ducasse, S., Girba, T. and Kuhn, A. “Distribution Map”, In Proc. of the

International Conf. on Software Maintance (ICSM), pp. 203-212, 2006.

[6] Eaddy, M. et al. “Do Crosscuting Concerns Cause Defects?”, IEEE
Transactions on Software Engineering, pp. 497-515, 2008.

[7] Fenton, N. E. and Pfleeger, S. L. “Software Metrics: A Rigorous and

Practical Approach”, 2nd ed. Thomson, 1996.

[8] Ferrari, F., et al.. “An Exploratory Study of Fault-Proneness in Evolving

Aspect-Oriented Programs”. In Proc. of the International Conference on

Software Engineering (ICSE), pp. 65-74, 2010.

[9] Figueiredo, E. , et al.. “On the Impact of Crosscutting Concern
Projection on Code Measurement”, In Proc. of the International

Conference on Aspect-Oriented Software Development (AOSD), 2011.

[10] Figueiredo, E. et al. "On the Maintainability of Aspect-Oriented

Software: A Concern-Oriented Measurement Framework", In Proc. of

the European Conf. on Soft. Maint. and Reengineering (CSMR), 2008.

[11] Figueiredo, E., et al. “Evolving Software Product Lines with Aspects: an

Empirical Study on Design Stability”. In Proc. of the International

Conference on Software Engineering (ICSE), pp. 261-270, 2008.

[12] Fowler, M. “Refactoring: Improving the Design of Existing Code”.
Addison – Wesley, 1999.

[13] Garcia, A., et al. “Modularizing Design Patterns with Aspects: A

Quantitative Study”. In Proc. of the International Conference on Aspect

Oriented Software Development (AOSD), 2005.

[14] Greenwood, P. et al. “On the Impact of Aspectual Decompositions on

Design Stability: An Empirical Study”. In Proc. of the European

Conference Object Oriented Programming (ECOOP), 2007.

[15] Kiczales, G., et al. “Aspect-Oriented Programming”. In Proc. of the
European Conference O.O. Programming (ECOOP), pp. 220-242, 1997.

[16] Lanza, M. and Marinescu, R. “Object-Oriented Metrics in Practice”.

Springer Verlag, 2006.

[17] Marinescu, R. “Detection Strategies: Metrics-Based Rules for Detecting

Design Flaws”. In Proc. of the Intl Conf. on Soft. Maint. (ICSM), 2004.

[18] Nguyen, T., Nguyen, H., Nguyen, H., and Nguyen, T. “Aspect
Recommendation for Evolving Software”. In Proc. of the International

Conference on Software Engineering (ICSE), pp. 361-370, 2011.

[19] Parnas, D. L. “On the criteria to be used in decomposing systems into

modules”. Communications of the ACM, 15(12), pp. 1053-1058, 1972.

[20] Riel, A. J. “Object-Oriented Design Heuristics”. Addison-Wesley

Professional, 1996.

[21] Robillard, M., Murphy, G. “Representing Concerns in Source Code”,
Trans. on Software Engineering and Methodology. 16(1), 2007.

[22] Sant’Anna, C., Garcia, A. and Lucena, C. “Evaluating the Efficacy of

Concern-Driven Metrics: A Comparative Study”. In Proc. Workshop on

Assessment of Contemporary Modularization Tech. (ACoM), 2008.

[23] Sant’Anna, C., et al. “On the Reuse and Maintenance of Aspect-
Oriented Software: An Assessment Framework”. In Proc. of the

Brazilian Symposium on Software Eng. (SBES), pp. 19-34, 2003.

[24] Silva, B. et al. “Concern-based Cohesion: Unveiling a Hidden

Dimension of Cohesion Measurement”. In Proc. of the Int’l Conference

on Program Comprehension (ICPC), 2012.

http://www.dcc.ufmg.br/~juliana.padilha/LaWasp2013/

