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ABSTRACT 

Bad smells are symptoms that something may be wrong in the 

system design or code. There are many bad smells defined in the 

literature and detecting them is far from trivial. Therefore, several 

tools have been proposed to automate bad smell detection aiming 

to improve software maintainability. However, we lack a detailed 

study for summarizing and comparing the wide range of available 

tools. In this paper, we first present the findings of a systematic 

literature review of bad smell detection tools. As results of this 

review, we found 84 tools; 29 of them available online for 

download. Altogether, these tools aim to detect 61 bad smells by 

relying on at least six different detection techniques. They also 

target different programming languages, such as Java, C, C++, 

and C#. Following up the systematic review, we present a 

comparative study of four detection tools with respect to two bad 

smells: Large Class and Long Method. This study relies on two 

software systems and three metrics for comparison: agreement, 

recall, and precision. Our findings support that tools provide 

redundant detection results for the same bad smell. Based on 

quantitative and qualitative data, we also discuss relevant usability 

issues and propose guidelines for developers of detection tools. 

CCS Concepts 
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1. INTRODUCTION 
Software maintenance and evolution are expensive activities and 

may represent up to 75% of the software development costs [39]. 

One reason for this fact is that the development efforts focus on 

addition of new functionality or bug correction rather than on 

design maintainability improvement [84]. Bad smells are an 

important factor affecting the quality and maintainability of a 

software system [22]. A bad smell is any symptom that may 

indicate a deeper quality problem in the system design or code 

[88]. For instance, we may consider duplicated code as a threat for 

future software maintenance tasks [82]. 

Bad smells can be detected in source code by either using manual 

or automated analyses [47]. Tools support automated analysis 

usually relying on different detection strategies, such as metric-

based [70] and visualization support [49]. Since there are many 

bad smell detection tools proposed in the literature, it is hard to 

enumerate them and say what bad smells they are able to detect. 

Additionally, many tools are restricted to detect bad smells in 

specific programming languages. Therefore, by providing a 

coverage study, we can catalogue which smells are detected in 

each programming language, for instance. 

Previous work [47][86] investigate the impact of bad smells on 

software quality and maintainability by studying the detection of 

smells in code. For instance, Fontana et al. [86] present a literature 

review covering seven bad smell detection tools and evaluate four 

of these tools in terms of their detection results. Similarly, Moha 

et al. [47] conduct an evaluation of a detection tool, called 

iPlasma [92], and compare it with other tools. The authors 

compute recall and precision for these tools. However, none of 

these studies provides an extensive overview of the research topic, 

as well as a comparison of bad smell detection tools. 

Some developers may find it difficult to choose the most 

appropriate tool according to their needs. Moreover, some 

available tools may be using redundant strategies for detection of 

bad smells. In this context, this study provides a systematic 

literature review (SLR) of bad smell detection tools. For each 

identified tool, we show its features, such as its developed 

programming language, compatible languages for smell detection, 

supported types of bad smells, online availability for download, 

available documentation, and release year. In summary, we 

provide an overview of the state of the art with respect to tools for 

bad smell detection, aiming to identify trends, open challenges, 

and research opportunities. 

As a result of our SLR, we found 84 bad smell detection tools 

proposed or used in research papers. These tools aim to detect 61 

different bad smells by relying on at least six different detection 

techniques. They also target various programming languages, 

such as Java, C, C++, and C#. We discuss the most frequent bad 

smells these tools aim to detect, trying to track the interest of 

researchers in the detection of specific smells. From the 84 tools 

that we found, 29 of them are available online for download. 

After the literature review, we conduct a comparative study with 

four available tools with respect to the detection of two Fowler’s 
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bad smells [88]: Large Class and Long Method. The studied tools 

are inFusion [19], JDeodorant [70], PMD [19], and JSpIRIT [72]. 

These four tools are free for use, designed to detect the two 

mentioned bad smells, and they we extracted from the 29 tools 

available online for download. The comparison of tools aims to 

assess agreement, recall, precision, and usability of the tools. As a 

result, we identify high agreement among tools with respect to the 

detection results, although JDeodorant points out more bad smell 

instances compared to the other tools. All four evaluated tools 

achieved poor precision rates (about 14%) in detecting Large 

Class. On the other hand, PMD and JSpIRIT performed well with 

respect to Long Method, achieving 50% to 67% of recall and 80% 

to 100% of precision. 

The remainder of this paper is organized as follows. Section 2 

describes the systematic literature review protocol we followed. 

Section 3 presents the results of the conducted literature review. 

Section 4 describes a comparative study of four bad smell 

detection tools for two selected bad smells. Section 5 discusses 

the lessons learned through this study. Section 6 presents 

limitations of this work. Section 7 discusses some related work. 

Finally, Section 8 concludes this study and points directions for 

future work. 

2. LITERATURE REVIEW PROTOCOL 
A Systematic Literature Review (SLR) is a study to provide 

identification, analysis and interpretation of evidences that relate 

to a particular research topic, supported by a protocol [91]. Three 

steps compose this SLR process: planning, conducting, and 

reporting. In the planning step, we identified the need of the 

literature review and, then, we defined the research questions and 

the review protocol. In the conduction step, we executed the 

defined protocol, covering from the initial selection of papers to 

the data extraction and analysis. Finally, we reported the obtained 

results for the target audience. This section describes these steps. 

2.1 Goal and Research Questions 
The goal of this systematic literature review is to identify and 

document all tools reported and used in the literature for bad smell 

detection. We defined this goal due to the wide number of 

proposed bad smell detection tools and the lack of a coverage 

study for summarizing them. We believe that tool developers and 

users would benefit of such a summarization and comparison of 

bad smell detection tools. In this context, we aim to investigate 

three research questions (RQs) described as follows. 

RQ1: What are the bad smell detection tools proposed or used in 

literature papers? 

RQ2: Which are the main features of these tools? 

RQ3: Which are the most frequent types of bad smells these tools 

aim to detect? 

To answer the first research question, RQ1, we perform: (i) an 

automated search in six electronic data sources and (ii) a manual 

filtering to the returned results. For RQ2, we choose to document 

the following features of each tool: name and release year, type of 

availability (i.e., plug-in, standalone, or both), user license, 

programming languages, supported bad smells and detection 

techniques, availability of documentation, and graphical user 

interface. Finally, by answering RQ3, we aim to identify all bad 

smells that researchers are interested in either by proposing 

detection tools or by investigating them in research studies. 

2.2 Search String and Selection Criteria 
There are various alternative terms for the concept of bad smell, 

such as design smell, code smell, and code anomaly. Since the 

goal of this study is to find the possible largest set of available 

tools for bad smell detection, we defined the following search 

string. 

(tool* AND (“bad smell*” OR “design smell*” OR “code 

smell*” OR “architecture smell*” OR “design anomaly*” OR 

“code anomaly*”)) 

We used the “*” symbol in order to reach derived words from the 

previous prefix. For instance, the words tools and tooling can be 

included as a derivation from tool* . Aiming to conduct searches 

in different electronic data sources, some adaptations were 

required to the presented search string. The search was applied on 

metadata only; i.e., title, abstract, and keywords. After pilot 

searching, we decided to exclude some general terms from the 

search string, such as design defect and design flaw, because they 

bring us many false positives. 

The pilot searches also supported the definition of the scope of 

this study. For instance, by means of pilot searches, we defined 

the inclusion and exclusion criteria. Table 1 summarizes the 

inclusion and exclusion criteria we applied in this study. Aiming 

to restrict the papers included, we defined four inclusion criteria 

and three exclusion criteria. For instance, as inclusion criteria 

papers published in the Computer Science area and, as an example 

of exclusion criteria, papers should be at least two pages long. 

Table 1. List of SLR Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

Papers published in Computer 

Science 

Papers published before 2000 

Papers written in English Papers shorter than two pages 

Papers available in electronic 

format 

Websites, leaflets, and grey 

literature 

Propose or use bad smell 

detect tools 

 

We decided to include only papers published after 2000 in our 

study because of the publication of the Refactoring book by 

Fowler [88] in 1999. This book defines the most well-known bad 

smells. The pilot searches have also not returned any relevant 

paper before 2000. Therefore, our study began with the search for 

papers published since 2000 until 2015. However, after 

conducting the snowballing step, a search approach that uses 

citations in papers from a SLR as reference list to identify 

additional papers not covered by the SLR [99], we found relevant 

research papers published since 1993. 

2.3 Electronic Data Sources 
We run the defined search string in July 2015 in six electronic 

data sources: ACM Digital Library1, IEEE Xplore2, Science 

Direct3, Scopus4, Web of Science5, and Engineering Village6. 

BibTeX and text files (in this case, converted to BibTeX) were 
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imported to the JabRef7 tool to manage the references. We 

manually download the BibTeX files of papers from ACM Digital 

Library, one by one, because it does not support automatic 

downloading. For the other electronic data sources, we were able 

to download the BibTeX or text file automatically. 

Figure 1 illustrates the steps we followed for selecting papers with 

the search string executed in the six aforementioned electronic 

data sources. At first, we start with 1002 studies: 429 from ACM 

Digital Library (ACM), 65 from IEEE Xplore (IEEE), 10 from 

ScienceDirect (SD), 145 from Scopus (SC), 217 from Web of 

Science (WoS), and 136 from Engineering Village (EV). 

 

 

Figure 1. Steps for Selection of Papers 

 

We then followed a five-step refinement process in order to select 

the final set of primary studies, as follows. Refinement 1 removed 

duplicated studies, resulting in 710 studies. Refinement 2 

discarded non-papers, such as technical reports and conference 

calls. After this refinement, we obtained 520 papers. In 

Refinement 3, we read metadata from these 520 papers and kept 

only 99 studies in accordance with all inclusion and exclusion 

criteria. We then conducted a full-text paper read for these 99 

papers, aiming to discard work that does not propose or use a bad 

smell detection tool, and kept 65 studies (Refinement 4). Finally, 

in Refinement 5, we conducted a snowballing procedure on the 65 

papers, looking for citation of tools not covered by this set. After 

this step, we are able to retrieved 42 additional papers. Therefore, 

at the end, we obtained 107 studies according to the inclusion and 

exclusion criteria for data extraction. The papers used to extract 

data from tools are listed in our research group website [100] and 

their references (used in this paper) are from [1] to [80]. With 

respect to references, we prioritize papers that propose tools. 

When we were not able to find it, we relied on a paper that uses or 

cites a tool. 

2.4 Data Extraction 
For data extraction, we conducted a careful full-text read of the 

107 selected primary papers. With respect to release year of tools, 

we considered the first identified value in a priority order. First, 

the integration year of an approach or algorithm for smell 

detection to an existing tool. If this data was not available, we 

considered the year of the paper that presented the tool. In case of 

not available information, we adopted the year of the first 

commercial off-the-shelf tool release. Finally, we considered the 

year of the earliest release of a tool documented on the Web. 
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By executing the SLR protocol, we found 84 bad smell detection 

tools. We recorded the extracted data about each tool in a 

spreadsheet for analysis, as well as relevant data from read papers 

that could be useful in writing this paper. We faced some 

difficulties in finding data related to some tools. For instance, 

some papers do not summarize the types of bad smells detected by 

the tool or they do not have a specific section to describe features 

of the tool (such as compatible language and applied detection 

technique). We tried to obtain as much information about the 84 

tools as we could by searching on the Web. 

2.5 Reporting 
Since some bad smells have the same definition, but with different 

names, it was necessary to treat these cases for data analysis. We 

decided to consider the bad smells that shared a similar definition 

using a unique term, based on the Fowler's definition [88]. Table 2 

lists the three bad smells that presented this naming clash 

problem. This table also shows the alternative names to the same 

bad smell. For instance, we considered Brain Method and God 

Method as alternative names of Long Method. The data analysis 

presented in Section 3 covers the entire set of 84 tools found. 

However, we considered only the 29 tools available online for 

download in our comparative study presented in Section 4. 

Table 2. List of Bad Smells with Alternative Terms 

Bad Smell Alternative Terms 

Duplicated 

Code 

Code Clone, Clone Class, Clone Code, Cloned 

Code, Code Duplication, Duplicated Prerequisites 

Large Class 
Big Class, Blob, Brain Class, Complex Class, God 

Class 

Long 

Method 
Brain Method, God Method 

 

3. RESULTS 
This section presents the results of the systematic literature 

review. Section 3.1 reports an overview of the 84 tools we found 

in this study by release year. Sections 3.2 to 3.4 aim to answer the 

research questions RQ1 to RQ3 presented in Section 2.1. 

3.1 Overview of Tools by Release Year  
Figure 2 illustrates the number of bad smell detection tools by 

release year. We were not able to retrieve the release year of one 

tool, namely Analyst [18]. Therefore, we did not take into account 

this tool in Figure 2. 

 

 

Figure 2. Number of Detection Tools Released by Year 



Data in Figure 2 show a high number of bad smell detection tools 

released from 2005 to 2014. In fact, there is an increase tendency 

in the number of released tools, with a peak in 2012 with 16 

released tools. Moreover, the highest number of proposed tools is 

in recent years, 2012 and 2014, although in 2013 it was released 

only one tool. 

3.2 List of Bad Smell Detection Tools 
The previous section shows that there is a high number of bad 

smell detection tools proposed and used in the literature. 

However, there is no study for summarizing them. Therefore, this 

section aims to answer the first research question (RQ1), defined 

as follows. 

RQ1: What are the bad smell detection tools proposed or used in 

literature papers? 

To answer this question, Table 3 presents the 84 bad smell 

detection tools we found in the literature review. In our study, we 

included tools to detect bad smells, even when the tool provides 

additional features, such as refactoring. We divided these tools in 

three categories: the first with the 29 tools that we were able to 

download and install (proposed or cited in literature); the second 

with the 54 tools proposed in literature but unavailable online for 

download; and the third group with one tool only cited in 

literature and not available for download.  

Table 3. List of Bad Smell Detection Tools Found in this SLR 

29 Tools Available Online for Download and Installation 

Borland Together [77], CCFinder (CCFinderX) [29], Checkstyle 

[19], Clone Digger [8], Code Bad Smell Detector [22], Colligens 

[45], ConcernReCS [1], ConQAT [13], DECKARD [26], DuDe 

[75], Gendarme [53], inCode [77], inFusion [19], IntelliJ IDEA 

[17], iPlasma [43], Java Clone Detector (JCD) [28], jCosmo 

[71], JDeodorant [70], NiCad [10], NosePrints [53], PMD [19], 

PoSDef [9], SDMetrics [62], SpIRIT (JSpIRIT) [72], Stench 

Blossom [49], SYMake [67], TrueRefactor [20], Understand 

[65], Wrangler [37] 

54 Tools Proposed in Literature but Unavailable Online 

Absinthe [66], Anti-pattern Scanner [76], Arcoverde et al. [3], 

AutoMeD [78], Bad Smell Detection Tool (BSDT) [12], Bad 

Smells Finder [21], Bauhaus [59], Bayesian Detection Expert 

(BDTEX) [33], Bavota et al. [5], Baxter et al. [6], Bug Forecast 

[16], Clone Detector [64], CloneDetective [27], CocoViz [7], 

CodeSmellExplorer [57], CodeVizard [79], CP-Miner [38], 

Crespo et al. [11], Crocodile [63], DÉCOR [47], Dup [4], 

Duploc [14], EvoLens [58], Hamza et al. [23], Hayashi et al. 

[24], Hist-Inspect [42], iSPARQL [34], It’s Your Code (IYC) 

[36], JCodeCanine [52], JSmell [61], Kaur and Singh [30], 

Keivanloo and Rilling [31], Kessentini et al. [32], Komondoor 

and Horwitz [35], Lui et al. [39], Matthew Munro [48], Mens et 

al. [46], Pradel et al. [56], PROblem DEtector O-O System 

(PRODEOOS) [44], Reclipse Tool Suite [73], Refactoring 

Browser [69], Ribeiro and Borba [60], SCOOP [40], Scorpio 

[25], Sextant [15], Smellchecker [55], SolidFX [68], Stasys 

Peldzius [54], SVMDetect [41], VCS-Analyzer [2], Wang et al. 

[74], WebScent [50], Xquery-based Analysis Framework (XAF) 

[51], Zang et al. [80] 

1 Tool Cited but Unavailable Online for Download  

Analyst [18] 

 

In Table 3, a reference following each tool means either: a paper 

that proposes the tool (when it is available), a paper that uses the 

tool, a paper that cites the tool, or the tool’s website. It is 

important to highlight that we only downloaded tools easily 

available online, that we found by searching on the Web or with 

an explicit link address in the selected paper. That is, we have not 

contacted authors or developers of tools to get access to a specific 

tool because we believe that actual users would not do this kind of 

direct contact. 

3.3 Main Features of Detection Tools 
This section presents and discusses the results of our systematic 

literature review with respect to the second research question 

(RQ2), defined as follows. 

RQ2: Which are the main features of these tools? 

By analyzing available data of the 84 tools, we observed that 

about 35.7% of the tools (30 in total) are plug-ins and 35.7% (30) 

are standalone applications. In addition, 4.7% (i.e., 4 tools) are 

available both as a plug-in and as a standalone application. These 

four tools are ConQAT [13], NosePrints [53], PMD [19], and 

SpIRIT (we call JSpIRIT from now on) [72]. We could not find 

information about the availability of 19 tools (i.e., 22.6%), despite 

of reading the tool papers and looking on the Web. 

Furthermore, 35 bad smell detection tools (41.6%) have 

documentation available online. In this study, we considered 

website, tutorial, or research papers with a tool description as 

available documentation. Moreover, 60 tools (71.4%) provide a 

graphical user interface (GUI) and only four tools do not provide 

GUI. For the remaining 20 tools (23.8%), this information was 

unavailable. 

Figure 3 shows the number of tools that aim to detect bad smells 

in some of the most popular programming languages. We 

presented data for nine of the top-ten most popular programming 

languages based on the IEEE Spectrum8 ranking. Only for 

language R, the 6-th most used programming language 

worldwide, we did not find a bad smell detection tool. This 

ranking rely on data from different sources, such as GitHub, 

Google, and Stack Overflow. Although nine of the 10 most 

popular languages have at least one detection tool, there is a 

concentration of proposed tools for only three languages: Java, C, 

and C++. Moreover, languages such as PHP and JavaScript have 

few compatible tools. These findings point out to a research 

opportunity in less explored languages. 

 

 

Figure 3. Programming Languages Tools Analyze 

                                                                 

8http://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2015 



Figure 4 illustrates the programming languages that tools were 

developed. The ten listed languages were all languages for which 

we found implemented tools. Again, Java is predominant, 

followed by C and C++, in accordance with the top-ten languages 

from Spectrum. Moreover, some less popular languages appear in 

the list, such as Smalltalk and Erlang, with few developed tools. 

 

Figure 4. Programming Languages Tools Were Developed 

With respect to the detection strategies, we found that 31 out of 

the 84 tools are metric-based (i.e., around 37% of the tools). For 

comparison, 15 (18%), 6 (7%), 5 (6%), and 3 (3.5%) of the tools 

are based on trees (such as AST), textual analysis, Program 

Dependence Graph (PDG), and token analysis, respectively. 

Moreover, 11 tools (approximately 13%) uses other strategies, 

such as machine learning and Logic Meta-programming (LMP). 

We were not able to find the detection technique applied by 17 of 

the 84 tools (around 20%). Note that the same tool may use 

combinations of detection techniques. Hence, the overall 

percentage may not be equal to 100%. 

3.4 Detected Bad Smells 
In addition to the features of selected tools presented in the 

previous section, another important feature of these tools is the list 

of detectable bad smells. Therefore, this section summarizes bad 

smells detected by each tool. In other words, we aim to answer the 

following research question. 

RQ3: Which are the most frequent types of bad smells these tools 

aim to detect? 

In total, this SLR found 61 different bad smells that tools can 

detect. From the 22 bad smells defined by Fowler [88], the found 

tools aim to detect 20 of them. The exceptions are Alternative 

Classes with Different Interfaces and Incomplete Library Class. In 

addition to 20 bad smells defined by Fowler, 41 smells defined by 

other authors [5][33][41][69][72] are detectable by the tools. 

These bad smells include Dispersed Coupling [72], Functional 

Decomposition [33], and Spaghetti Code [5], for instance. Figure 

5 presents the top-ten most frequent bad smells that the found 

tools aim to detect. We can point out that all ten most recurrent 

smells are from Fowler's book. 

Figure 5 also represents the percentage of tools that aim to detect 

each bad smell with respect to the entire set of 84 found tools. We 

highlight that Duplicated Code and Large Class are by far the 

major targets of detection tools. More than 40% of tools target at 

least one of these bad smells. One interesting question may 

emerge. Why are developers and researchers more interested in 

detecting these smells than others? The answer could be the high 

relevance of Duplicated Code to software engineering research. In 

the case of Large Class, we believe that it is target of many tools 

because it is probably one of the easiest bad smells to detect (in 

addition to its relevance to software engineering research). 

 

Figure 5. Top-ten Most Recurring Bad Smells 

4. A COMPARATIVE STUDY 

This section presents a comparative table of the 29 bad smell 

detection tools that we were able to download and install. We also 

performed a detailed comparative study of four tools, namely 

inFusion, JDeodorant, PMD, and JSpIRIT. Section 4.1 shows the 

comparison of the 29 tools and explains the criteria used to select 

the 4 tools for the comparative study. Section 4.2 presents the two 

bad smells (Large Class and Long Method) we choose to analyze 

in two software systems, namely JUnit [101] and MobileMedia 

[85]. Section 4.3 presents the overall number of bad smells 

detected by each tool. Based on these results, Section 4.4 reports 

and discusses the agreement among tools with respect to the 

detection of two bad smells in the selected systems. Finally, 

Section 4.5 verifies recall and precision of the chosen detection 

tools with respect to a reference list of bad smells. 

4.1 Selection of Detection Tools 
We found 84 bad smell detection tools in the systematic literature 

review reported in Sections 2 and 3. Since we could not get 

detailed information about all 84 tools, Table 4 presents general 

information of a selected set of 29 tools that we were able to 

download and install. In this table, “NA” means that data are not 

available (e.g., we were not able to find the data) and “AST” in 

the column Detection Technique means that the tool analyzes the 

Abstract Syntax Tree of a program. As far as information is 

available, we provide partial data about all 84 tools in the research 

group website [100]. 

We selected four bad smell detection tools for analysis in the 

comparative study, namely inFusion, JDeodorant, PMD, and 

JSpIRIT. The selection process was conducted as follows. First, 

we choose the Java programming language to study, since it is the 

most common language tools analyze (see Figure 3). We adopted 

similar criteria to select tools by their sets of bad smells, discussed 

in Section 4.2. We then restrict the set of tools to include only 

tools that are free for use, at least in a trial version. After applying 

these criteria, we end up with eight tools from the 29 listed in 

Table 4: Checkstyle, inFusion, iPlasma, JDeodorant, PMD, 

JSpIRIT, Stench Blossom, and TrueRefactor. However, 

Checkstyle, iPlasma, TrueRefactor, and Stench Blossom have 

been later discarded by different reasons, as discussed below. 

In our study, we discarded Checkstyle because it was not able to 

detect any instance of the studied bad smells in the selected 



software systems. We also discard iPlasma because we could not 

run the tool properly. In addition, we are aware that the same 

research group developed both iPlasma and inFusion. Therefore, 

these tools probably follow similar detection strategies. We have 

not used TrueRefactor in this comparative study because it does 

not provide an executable file in the package we downloaded. 

Finally, we also discarded Stench Blossom because it lacks a bad 

smell occurrence list (Stench Blossom is a visualization tool with 

no listing feature). Therefore, it is hard to validate their results, for 

instance, to calculate recall, precision, and agreement. 

4.2 Selection of Bad Smells and Applications 
As discussed in Section 3.4, the three most frequent bad smells 

detected by tools are Duplicated Code, Large Class, and Long 

Method. Since we are interested in investigating agreement among 

tools for the same bad smell, it seems natural for us to choose 

these three bad smells because most tools are able to detect them. 

However, we discard Duplicated Code because the nature of this 

bad smell makes it hard to quantity the aimed results: recall, 

precision, and agreement. In other words, we cannot easily 

compare the results of Duplicated Code neither among tools nor 

with the reference list because style of the output results vary a lot 

from one tool to another. Therefore, this comparative study 

focuses the analysis only on Large Class and Long Method. 

For this comparative study, we selected two different software 

systems: JUnit version 4 [101] and MobileMedia version 9 

(object-oriented version) [85]. JUnit is an open source Java testing 

framework and MobileMedia [85] is a software product line 

(SPL) for applications that manipulate photo, music, and video on 

mobile devices. Table 5 presents the number of classes, methods 

and lines of code of JUnit and MobileMedia. We choose these two 

software systems because they have been recurrently used in 

previous quality and maintainability-related studies 

[85][87][93][95]. JUnit is a well-known medium size open source 

project. We rely on JUnit to assess if tools are able to detect bad 

smells in a larger software system. Moreover, we have access to 

the MobileMedia developers and experts, and then we can recover 

a reference list of bad smells for MobileMedia. 

With respect to the MobileMedia reference list protocol, we relied 

on two experts who used their own strategy for detecting, 

individually and manually, the bad smells in the classes and 

methods of the system. As a result, they returned two lists of 

entities. We merged these lists and discussed the findings with a 

Table 4. List of Bad Smell Detection Tools Available for Download 

Tool Name Plug-in Detected Bad Smells 
Language Detection 

Technique 

Free for 

Use 
Guide GUI 

Release 

Year Developed Detect 

Borland Together Yes Duplicated Code Java C#, C++, Java Metrics No Yes Yes 2011 

CCFinder (CCFinderX) No Duplicated Code C++ C, C#, C++, etc. Token Yes Yes Yes 2002 

Checkstyle Yes 
Duplicated Code, Large Class, Long 

Method, Long Parameter List 
Java Java NA Yes Yes Yes 2001 

Clone Digger NA Duplicated Code Python Java, Lua, Python Tree Yes Yes Yes 2008 

Code Bad Smell 

Detector 
No 

Data Clumps, Switch Statements, and 

3 other  
Java Java AST Yes No No 2014 

Colligens Yes NA C C NA Yes Yes Yes 2014 

ConcernReCS Yes 
Concern Smells: Primitive Concern 

Constant, and  5 other 
Java Java 

Concern 

map 
Yes Yes Yes 2012 

ConQAT Both Clone Code Java 
ABAP, ADA, 

C++, C#, Java 
Metrics No Yes Yes 2005 

DECKARD No Clone Code C Java AST Yes Yes No 2007 

DuDe No Clone Code Java 
Language 

independent 

Textual 

analysis 
Yes No Yes 2005 

Gendarme No 
Duplicated Code, Large Class, Long 

Method, and 4 other  
C# .NET, Mono Rules Yes Yes Yes 2006 

inCode Yes 
Data Class, Data Clumps, Duplicated 

Code, and 2 other  
Java C, C++, Java NA No Yes Yes 2013 

inFusion No 
Data Class, Data Clumps, Duplicated 

Code, and 2 other 
NA C, C++, Java NA No Yes Yes 2011 

IntelliJ IDEA No 
Data Clumps, Feature Envy, Large 

Class, and 4 other  
NA 

Java, JavaScript, 

and 4 others 
NA No Yes Yes 2001 

iPlasma No 
Duplicated Code, Feature Envy, 

Intensive Coupling, and 4 other  
Java C++, Java 

Textual 

analysis 
Yes Yes Yes 2005 

Java Clone Detector No Duplicated Code C++ Java Tree Yes Yes No 2009 

jCosmo No 
InstanceOf, Switch Statement, 

Typecast 
NA Java Tree NA Yes Yes 2002 

JDeodorant Yes 
Feature Envy, Large Class, Long 

Method 
Java Java 

Metrics, 

AST 
Yes Yes Yes 2007 

JSpIRIT Both 
Data Class, Dispersed Coupling, 

Feature Envy, and 5 other  
Java 

C++, Java, 

Smalltalk 
Metrics Yes Yes Yes 2014 

NiCad Yes Duplicated Code C C, C#, Java, etc. NA Yes Yes Yes 2011 

NosePrints Both 
Feature Envy, Inappropriate Intimacy, 

Large Class, and 5 other 
NA NA NA No No Yes 2008 

PMD Both 
Duplicated Code, Large Class, Long 

Method, Long Parameter List 
Java 

C, C#, C++, Java, 

PHP, and 11 other 
NA Yes Yes Yes 2008 

PoSDef Yes NA C# UML diagrams  Metrics Yes No Yes 2014 

SDMetrics No Large Class Java UML diagrams  NA No Yes Yes 2012 

Stench Blossom Yes Comments, Data Clumps, and 4 other Java Java Metrics Yes Yes Yes 2010 

SYMake No 
Cyclic Dependency, Duplicated 

Prerequisites 
NA C and Java NA Yes Yes Yes 2012 

TrueRefactor No Lazy Class, Long Method, and 3 other  Java Java Graph Yes Yes Yes 2011 

Understand No NA NA C, C#, C++, etc. NA No Yes Yes 2008 

Wrangler Yes Duplicated Code Erlang Erlang 
Textual 

analysis 
Yes Yes Yes 2010 

 



developer of the system to achieve a consensus and validate the 

entities that present a bad smell. The result of this discussion 

generated the final reference list used in this study. Table 6 

presents the total number of Large Classes and Long Methods 

found in this system, according to the previously described 

protocol. 

Table 5. Size metrics of JUnit and MobileMedia 

Size Metrics JUnit MobileMedia 

Number of Classes 983 55 

Number of Methods 2948 290 

Lines of Code (LOC) 26456 3216 

Table 6. Reference list of bad smells in MobileMedia 

Bad Smell Occurrences 

Large Class 7 

Long Method 6 

Total 13 

4.3 Overall Results 
For this comparative study, we configured two personal 

computers with two different operating systems. Two authors 

performed the same procedures, each one in a different computer. 

We decided to run our experiments in two different computers to 

assure the correctness of obtained data, through comparison of 

obtained results. Then, we aimed to minimize possible human 

mistakes in the retrieved results. We first installed the selected 

standalone tools in both computers, according to the tool version 

that is available for the specific operating systems. Then, we 

installed the plug-in tools in different Eclipse IDE instances. We 

rely on the default tool settings; i.e., no specific configuration was 

defined to any tool. Next, we used the detection tools to analyze 

the source code of the two Java applications: JUnit and 

MobileMedia. 

After each tool has finished its execution, we recorded their 

detection results for the two bad smells studied in this study. 

Finally, we compared the results obtained in each personal 

computer to identify possible divergences. For all evaluated tools, 

both executions resulted in the same detected bad smell instances. 

Table 7 lists the number of detected Large Classes (LC) or Long 

Methods (LM) in JUnit and MobileMedia by each detection tool. 

Note that, in our study, we do not know the detection techniques 

applied by inFusion and PMD. On the other hand, we found that 

JSpIRIT uses metrics and JDeodorant uses both metrics and AST 

technique to detect bad smells. Considering that some tools apply 

unknown techniques, detection results may be different. We can 

observe that JDeodorant indicates the highest number of Large 

Class and Long Method instances in both software systems. In 

addition, apart from JDeodorant, tools have not detected Long 

Method instances in JUnit.  

Table 7. Bad Smell Detection in JUnit and MobileMedia 

Tool Name 
Junit MobileMedia 

LC LM LC LM 

inFusion 0 0 1 2 

JDeodorant 88 48 11 12 

PMD 12 0 1 3 

JSpIRIT 6 0 2 5 

4.4 Agreement 
To assess agreement among the selected detection tools, we 

compute the AC1 statistic coefficient [89]. It is a robust 

agreement coefficient alternative to the Cohen’s kappa [83] and 

other common statistics for inter-rater agreement. It takes a value 

between 0 and 1, and reports the level of agreement using the 

following scale: Poor (< 0.20), Fair (0.21 to 0.40), Moderate (0.41 

to 0.60), Good (0.61 to 0.80), and Very Good (0.81 to 1.00) [81]. 

Table 8 shows the agreement computed for the two analyzed 

applications, JUnit and MobileMedia, in terms of overall 

agreement (OA), AC1 coefficient (AC1), and 95% confidence 

interval (CI) of the detection tools. Note that, since Cohen's Kappa 

computes agreement between only two raters and we have 

multiple agreements (there are 4 tools to be compared), we 

decided to use a different agreement metric. 

Regarding the JUnit analysis, we observed that the tools present a 

“Very Good” agreement in terms of Large Class detection results. 

However, for the same application, we were not able to compute 

agreement with respect to Long Method because only one tool 

(namely, JDeodorant) was able to identify this type of smell. 

Regarding the MobileMedia analysis, we conclude that the tools 

present a “Very Good” agreement in detecting both Large Class 

and Long Method. 

In general, these results show the evaluated tools provide 

redundant detection results. However, we must consider the 

computed agreement may be high because the low number of bad 

smells in the applications. Therefore, a high agreement may 

indicate they agree with respect to non-detected elements instead 

of with detected bad smells. 

4.5 Recall and Precision 
To assess the accuracy of the studied tools to detect Large Class 

and Long Method, we computed recall and precision based on the 

bad smell reference list for the MobileMedia application. Table 9 

presents the calculated values for each detection tool, with respect 

Table 8. Agreement of Tools for JUnit and MobileMedia 

 Large Class Long Method 

Application OA AC1 95% CI OA AC1 95% CI 

JUnit 88.55% 0.87 [0.84, 0.90] - - - 

MobileMedia 88.79% 0.87 [0.79, 0.94] 97.27% 0.97 [0.96, 0.98] 

 

Table 9. Recall and Precision of the Tools for MobileMedia Only 

Bad Smell 
Recall Precision 

inFusion JDeodorant PMD JSpIRIT inFusion JDeodorant PMD JSpIRIT 

Large Class 14% 14% 14% 14% 100% 9% 100% 50% 

Long Method 33% 33% 50% 67% 100% 17% 100% 80% 

 

 

 

 

 

 



to MobileMedia only (for Junit, we have no reference list). With 

respect to recall, PMD and JSpIRIT provided the highest results. 

For instance, PMD and JSpIRIT achieved 50% and 67% of recall, 

respectively, when detecting Long Method. PMD is also the tool 

with the most accurate detection results for Large Class in the 

MobileMedia system. When analyzing precision, inFusion and 

PMD show the highest values. These tools always achieved 100% 

precision for both bad smells in the MobileMedia system. In 

general, JDeodorant scored the lowest results for both recall and 

precision. In turn, inFusion presented satisfactory results 

regarding precision, but low recall rates for both studied bad 

smells.  

5. LESSONS LEARNED 
In this section, we discuss some of the lessons learned in this 

study with respect to both the systematic literature review 

(Section 3) and the comparative study of detection tools (Section 

4). Section 5.1 discuss some lessons with respect to the 

Duplicated Code bad smell. Section 5.2 summarizes the lessons 

about Large Class and Long Method detection. Finally, Section 

5.3 presents usability issues we faced while installing and using 

the bad smell detection tools. 

5.1 Duplicated Code 
As pointed in Section 3.4, Duplicated Code is the most frequent 

bad smell that tools aim to detect. However, as discussed in 

Section 4.2, tools for detecting this smell present some usability 

issues that prevent us to quantitatively investigate recall, 

precision, and agreement of the tools. In fact, as discussed by 

Bellon et al. [82], Duplicated Code is a complex smell to detect. 

Therefore, we identify a research opportunity for tool developers 

to work on how to better present results of this bad smell in an 

easier way to be quantifiable and compared. 

5.2 Large Class and Long Method 
In the comparative study of tools with respect to Large Class and 

Long Method detection, we conclude that the proposed tools 

provide redundant detection results. We observed this redundancy 

by the high values of agreement for the studied tools that point to 

a “Very Good” agreement. Regarding recall, the tools presented 

low to medium rates for Large Class detection, indicating a 

possible open challenge. In respect to precision, two tools, namely 

inFusion and PMD, provided maximum precision (100%) that 

indicates to perfect accuracy of these tools in this case. 

As discussed in Section 4.3, we were not able to know the 

detection techniques applied by inFusion and PMD. In turn, we 

observed that JDeodorant and JSpIRIT rely on metric-based 

detection strategies. Therefore, we may infer the redundancy may 

be due to similar detection techniques. In the context, by 

exploring alternative strategies than metrics, we may obtain 

different and, maybe, more effective results. 

5.3 Usability Evaluation 

By installing and using bad smell detection tools, we identified 

some usability issues about the tools that are worth to mention. 

Table 10 presents some features we observed in the four evaluated 

tools. For each tool, an “X” means that a tool supports a related 

feature. We can observe that inFusion is the only tool that 

supports all five features, although two of these are available only 

in the full and paid version of the tool. 

With respect to the Result Export feature, for instance, we 

expected that results about the detected bad smells were easily 

exportable, for instance, to text, CSV or other file formats. 

However, some tools do not provide any way of exporting the 

results. In the set of the four tools evaluated in Section 4, only 

JDeodorant supports this feature and inFusion supports in a paid 

tool version. Another desirable feature is to highlight the smell-

related source code. This feature makes it clear the source code 

related to a bad smell. All four detection tools somehow support 

this feature. 

Table 10. Applicability Features of the Tools 

Feature inFusion JDeodorant PMD JSpIRIT 

Result export 
X (in full 

version) 
X   

Highlight smell 
occurrences 

X X X X 

Allow detection 

settings 
X X X X 

Graph 
visualization 

X    

Detected Smell 

Filtering 

X (in full 

version) 
X X  

In the case of metric-based detection strategies, tools usually 

provide the possibility of changing thresholds for metrics. Other 

tools also provide similar configuration options in order to set 

how sensible bad smell detection is in each specific context. All 

evaluated tools also support specific setting of the detection 

strategy. Finally, it is also desirable some enhanced visualization 

means to present the detection results using, for instance, 

graphical elements such as charts. Only inFusion provides such 

support. Apart from JSpIRIT, the evaluated tools support the 

Filtering feature . This feature allows hiding part of the results by 

setting visualization options. 

In addition to the aforementioned features, we found that some 

usability issues could hinder the tool user experience. For 

instance, we faced some usability problems, such as difficulty to 

navigate between bad smell occurrences (in general, results are 

showed in long lists without summarization), difficulty to identify 

the source code related to a smell detection, and lack of advanced 

filters for specific bad smells we want to detect. 

In general, we also observed that the tools do not provide data 

visualization through statistical analysis, counters of detection 

results, or results presentation by charts. These features could be 

useful in the comparison of tools. Furthermore, PMD and JSpIRIT 

do not provide way to export the results. This feature is helpful in 

data analysis and comparison. In this context, we suggest that 

developers of new detection tools should be aware of the possible 

usages of their tools, considering these observations. 

6. THREATS TO VALIDITY 
Even with the careful planning, different factors may affect these 

research results by invalidating its main findings. We discuss 

below strategies taken to reduce the impact of these factors on the 

validity of our research results. Some of these actions, mainly 

related to our research method, we adopted to increase the study 

confidence, aiming to reduce the threats to the study validity. 

Scope and Strategy – For the systematic literature review, we 

selected six different electronic data sources, but there may be 

other sources with relevant papers. Nevertheless, we consider 

minimizing this threat by the use of data sources that aggregate 

papers from diversified publishers (for instance, Scopus and Web 

of Science). Furthermore, we attend to answer questions clearly 

and unambiguously, even if the answers provided are not the most 

conclusive. 



Validation and Generalization of Data and Results – With 

respect to the review protocol, we designed a search string for 

restricting our research. This string includes more than 10 

synonyms for “bad smell” and, so, we expect to have achieved a 

sufficient number of papers in the studied context. In addition, we 

performed a pilot search to define the terms to appear in the 

search string. However, we cannot assume that all existing related 

papers were included through this filtering. 

Search String Execution – We run our search string in two 

different computers, and we downloaded the BibTeX and text 

files three times, obtaining identical results. Thereby, we expected 

to reduce errors in string run task with respect to human factors. 

In case of text files, we converted them to the BibTeX style of 

references. In case of ACM data source, we were not able to 

export references automatically and, then, we transcribed 

manually the main data about each found papers (author, title, 

year, and journal) in a BibTeX file. 

To eliminate repeated papers and keep only papers (Refinements 

1 and 2). One of us verified this condition manually and another 

audited the results. In Refinement 3 (read metadata and include 

papers), we performed three classification steps. In the first step, 

one author read each metadata paper and scored it (-2 for out of 

context paper, -1 for papers that seems to propose or use a tool 

without explicit use of search string words in metadata, 0 for 

doubt, 1 for papers that use a tool, and 2 for papers that propose a 

tool). In our study, papers scored by -2, -1, and 0 should be 

discarded. In the second step, another author repeated the previous 

procedure. This task returned another score for metadata. Finally, 

a third author decided to include or not a paper based on the 

scores given by the other two researchers. In case of doubt, the 

paper was included for the next step. We believe this protocol 

minimized biases by considering the point of view of three 

authors, and the agreement of at least two of them. 

Full-text Analysis and Data Extraction – One of the authors 

was responsible to read fully the selected papers and extract 

proposed or used bad smell detection tools from them. Although 

the careful conduction of this, with no deadline for completion, 

we do not take other measure for risk reduction. Only an analysis 

performed by another author in 10% of randomly chosen data. In 

this context, some tools that detect bad smells may have been 

wrongly discarded. For instance, we discarded tools such as 

Archimetrix [98], FindBugs [90], and VisTra [97], because we 

considered that they are not related to bad smells detection 

according to our bad smell definition based on Fowler [88]. 

Cataloging Features of the Tools – We were not able to find the 

name of some tools. In these cases, we named a tool with the 

authors who proposed it. In turn, some tools were, in fact, an 

evolution of previous tools and, so, we named them with the name 

of the previous tool. Another issue in cataloging features was that 

some papers did not specify the detected bad smells. Therefore, 

we abstracted the maximum types of bad smells informed to 

compose the table of tools and features, available in the research 

group website [100]. 

Comparison of the Tools – Detection tools aim to identify bad 

smell in different ways, using diverse techniques and procedures. 

Moreover, some tools do not provide customization of detection 

mechanisms, such as thresholds for metrics. Therefore, we 

decided to use all the evaluated tools in their default 

configurations. However, other configuration settings would 

probably give different results. 

7. RELATED WORK 
To the best of our knowledge, we did not find work that 

performed a systematic literature review and an extensive 

evaluation of bad smell detection tools. In spite of that, we found 

some studies [47][86][94] that can be considered related to our 

research. 

Fontana et al. [86] present a closely related study. They discussed 

the findings of a literature review (but, not systematic) covering 

seven detection tools, namely Checkstyle, DÉCOR, inFusion, 

iPlasma, JDeodorant, PMD, and Stench Blossom. Furthermore, 

they evaluated four tools, Checkstyle, inFusion, JDeodorant, and 

PMD, using six versions of a same software system as input. They 

concluded that the tools provide significantly different detection 

results for a same bad smell, and some results are redundant. In 

respect to agreement of tools, they found significant agreement 

results only for two bad smells: Large Class and Long Parameter 

List. 

Another related work, by Moha et al. [47], evaluates detection 

tools, but without providing a systematic literature review. The 

authors present a comparative study of tools including a new one 

proposed by them, called iPlasma. By using a list of bad smells 

built through manual inspection of source code, they were able to 

compute recall and precision for iPlasma. However, their study 

does not compare an extensive set of detection tools, and there is 

no agreement computation. 

We have previously conducted an ad hoc literature review of 

duplicated code detection tools [96]. In this previous study, we 

investigated the available tools for single software projects in the 

context of cross-project detection of Duplicated Code. In this 

review, we found 20 tools and conducted a comparative study 

among tools that were available online for download. In general, 

several usability issues may occur in the analyzed tools, such as 

the lack of an option to export results and problems related to 

usability of the tools. Finally, we proposed in this previous paper 

[96] some guidelines for future implementation of detection tools, 

considering our findings by studying these tools. 

Unlike previous work, this paper provides an overview of the state 

of the art in bad smell detection tools through a systematic 

literature review. In addition, we present a comparative study of 

tools available online for download and compatible with two of 

the most frequent bad smells that tools aim to detect. We compute 

agreement, precision and recall of these tools. Furthermore, we 

discuss same usability issues of the bad smell detection tools 

identified through the comparative study. 

8. CONCLUSION 
Bad smells are symptoms of anomalies in source code that can 

indicate problems in a software system. Although we may conduct 

manual detections of bad smells, some tools support this activity, 

using different detection strategies and approaches. In this paper, 

we present the results of a systematic literature review on bad 

smell detection tools (Sections 2 and 3). We found a large set of 

84 different tools, but only 29 of them are available online for 

download. 

With respect to the 84 tools, we observe that the amount of 

standalone and plug-in tools are roughly the same. In addition, the 

review results show that Java, C, and C++ are the top-three most 

covered programming language for bad smell detection. Most of 

the 84 tools are implemented in Java and rely on metric-based 

detection technique. Finally, the review shows that Duplicated 



Code, Large Class, and Long Method are the top-three bad smells 

that tools aim to detect. 

In addition to the systematic literature review, we conducted a 

comparison of tools with respect to two of the most recurrent bad 

smells that tool are designed to detect (Section 4). Through this 

study, we observed that the analyzed tools provide redundant 

detection results, given the high agreement coefficient computed. 

The results of this comparative study indicate that JDeodorant is 

the tools that indicates more instances of bad smells in its default 

configuration. However, PMD achieved the most accurate 

detection results for Large Class, considering both recall and 

precision measurements. With respect to Long Method, the PMD 

and JSpIRIT tools provided better results. They achieved 50% and 

67% of recall, respectively. All tools presented some usability 

issues discussed in the lessons learned (Section 5). 

The main contributions of this paper can be summarized as 

follows. We first present a systematic literature review of bad 

smell detection tools that found 84 different tools, and catalogued 

them by relevant features, such as detected bad smells, 

programming language for detection of smells, and detection 

techniques. We also performed a comparative study of tools 

considering the most frequent bad smells that tools aim to detect 

(Large Class and Long Method). Based on the literature review 

and comparative study, we discuss quantitative (agreement, recall, 

and precision) and qualitative data (lessons learned) about the 

tools. 

As future work, we suggest an investigation on the interest of 

developers with respect to detection of some specific bad smell, 

such as Duplicated Code, Large Class, and Long Method. Another 

suggestion for future work is to study the redundancy of detection 

tool results. In addition, developers of current and new detection 

tools should be consider the usability issues discussed in this 

paper and cover the less studied bad smells. 
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