
A Review-based Comparative Study of Bad Smell
Detection Tools

Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, Eduardo Figueiredo
Software Engineering Laboratory (LabSoft) – Department of Computer Science (DCC)

Federal University of Minas Gerais (UFMG) – Belo Horizonte – MG – Brazil

{eduardofernandes, johnatan-si, gustavovale, thpaiva, figueiredo}@dcc.ufmg.br

ABSTRACT

Bad smells are symptoms that something may be wrong in the

system design or code. There are many bad smells defined in the

literature and detecting them is far from trivial. Therefore, several

tools have been proposed to automate bad smell detection aiming

to improve software maintainability. However, we lack a detailed

study for summarizing and comparing the wide range of available

tools. In this paper, we first present the findings of a systematic

literature review of bad smell detection tools. As results of this

review, we found 84 tools; 29 of them available online for

download. Altogether, these tools aim to detect 61 bad smells by

relying on at least six different detection techniques. They also

target different programming languages, such as Java, C, C++,

and C#. Following up the systematic review, we present a

comparative study of four detection tools with respect to two bad

smells: Large Class and Long Method. This study relies on two

software systems and three metrics for comparison: agreement,

recall, and precision. Our findings support that tools provide

redundant detection results for the same bad smell. Based on

quantitative and qualitative data, we also discuss relevant usability

issues and propose guidelines for developers of detection tools.

CCS Concepts

• General and reference ➝ General literature • General and

reference ➝ Experimentation • Software and its engineering

➝ Software maintenance tools • Software and its engineering

➝ Software defect analysis.

Keywords

Systematic literature review; comparative study; bad smells;

detection tools.

1. INTRODUCTION
Software maintenance and evolution are expensive activities and

may represent up to 75% of the software development costs [39].

One reason for this fact is that the development efforts focus on

addition of new functionality or bug correction rather than on

design maintainability improvement [84]. Bad smells are an

important factor affecting the quality and maintainability of a

software system [22]. A bad smell is any symptom that may

indicate a deeper quality problem in the system design or code

[88]. For instance, we may consider duplicated code as a threat for

future software maintenance tasks [82].

Bad smells can be detected in source code by either using manual

or automated analyses [47]. Tools support automated analysis

usually relying on different detection strategies, such as metric-

based [70] and visualization support [49]. Since there are many

bad smell detection tools proposed in the literature, it is hard to

enumerate them and say what bad smells they are able to detect.

Additionally, many tools are restricted to detect bad smells in

specific programming languages. Therefore, by providing a

coverage study, we can catalogue which smells are detected in

each programming language, for instance.

Previous work [47][86] investigate the impact of bad smells on

software quality and maintainability by studying the detection of

smells in code. For instance, Fontana et al. [86] present a literature

review covering seven bad smell detection tools and evaluate four

of these tools in terms of their detection results. Similarly, Moha

et al. [47] conduct an evaluation of a detection tool, called

iPlasma [92], and compare it with other tools. The authors

compute recall and precision for these tools. However, none of

these studies provides an extensive overview of the research topic,

as well as a comparison of bad smell detection tools.

Some developers may find it difficult to choose the most

appropriate tool according to their needs. Moreover, some

available tools may be using redundant strategies for detection of

bad smells. In this context, this study provides a systematic

literature review (SLR) of bad smell detection tools. For each

identified tool, we show its features, such as its developed

programming language, compatible languages for smell detection,

supported types of bad smells, online availability for download,

available documentation, and release year. In summary, we

provide an overview of the state of the art with respect to tools for

bad smell detection, aiming to identify trends, open challenges,

and research opportunities.

As a result of our SLR, we found 84 bad smell detection tools

proposed or used in research papers. These tools aim to detect 61

different bad smells by relying on at least six different detection

techniques. They also target various programming languages,

such as Java, C, C++, and C#. We discuss the most frequent bad

smells these tools aim to detect, trying to track the interest of

researchers in the detection of specific smells. From the 84 tools

that we found, 29 of them are available online for download.

After the literature review, we conduct a comparative study with

four available tools with respect to the detection of two Fowler’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

EASE '16, June 01-03, 2016, Limerick, Ireland

© 2016 ACM. ISBN 978-1-4503-3691-8/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2915970.2915984

bad smells [88]: Large Class and Long Method. The studied tools

are inFusion [19], JDeodorant [70], PMD [19], and JSpIRIT [72].

These four tools are free for use, designed to detect the two

mentioned bad smells, and they we extracted from the 29 tools

available online for download. The comparison of tools aims to

assess agreement, recall, precision, and usability of the tools. As a

result, we identify high agreement among tools with respect to the

detection results, although JDeodorant points out more bad smell

instances compared to the other tools. All four evaluated tools

achieved poor precision rates (about 14%) in detecting Large

Class. On the other hand, PMD and JSpIRIT performed well with

respect to Long Method, achieving 50% to 67% of recall and 80%

to 100% of precision.

The remainder of this paper is organized as follows. Section 2

describes the systematic literature review protocol we followed.

Section 3 presents the results of the conducted literature review.

Section 4 describes a comparative study of four bad smell

detection tools for two selected bad smells. Section 5 discusses

the lessons learned through this study. Section 6 presents

limitations of this work. Section 7 discusses some related work.

Finally, Section 8 concludes this study and points directions for

future work.

2. LITERATURE REVIEW PROTOCOL
A Systematic Literature Review (SLR) is a study to provide

identification, analysis and interpretation of evidences that relate

to a particular research topic, supported by a protocol [91]. Three

steps compose this SLR process: planning, conducting, and

reporting. In the planning step, we identified the need of the

literature review and, then, we defined the research questions and

the review protocol. In the conduction step, we executed the

defined protocol, covering from the initial selection of papers to

the data extraction and analysis. Finally, we reported the obtained

results for the target audience. This section describes these steps.

2.1 Goal and Research Questions
The goal of this systematic literature review is to identify and

document all tools reported and used in the literature for bad smell

detection. We defined this goal due to the wide number of

proposed bad smell detection tools and the lack of a coverage

study for summarizing them. We believe that tool developers and

users would benefit of such a summarization and comparison of

bad smell detection tools. In this context, we aim to investigate

three research questions (RQs) described as follows.

RQ1: What are the bad smell detection tools proposed or used in

literature papers?

RQ2: Which are the main features of these tools?

RQ3: Which are the most frequent types of bad smells these tools

aim to detect?

To answer the first research question, RQ1, we perform: (i) an

automated search in six electronic data sources and (ii) a manual

filtering to the returned results. For RQ2, we choose to document

the following features of each tool: name and release year, type of

availability (i.e., plug-in, standalone, or both), user license,

programming languages, supported bad smells and detection

techniques, availability of documentation, and graphical user

interface. Finally, by answering RQ3, we aim to identify all bad

smells that researchers are interested in either by proposing

detection tools or by investigating them in research studies.

2.2 Search String and Selection Criteria
There are various alternative terms for the concept of bad smell,

such as design smell, code smell, and code anomaly. Since the

goal of this study is to find the possible largest set of available

tools for bad smell detection, we defined the following search

string.

(tool* AND (“bad smell*” OR “design smell*” OR “code

smell*” OR “architecture smell*” OR “design anomaly*” OR

“code anomaly*”))

We used the “*” symbol in order to reach derived words from the

previous prefix. For instance, the words tools and tooling can be

included as a derivation from tool* . Aiming to conduct searches

in different electronic data sources, some adaptations were

required to the presented search string. The search was applied on

metadata only; i.e., title, abstract, and keywords. After pilot

searching, we decided to exclude some general terms from the

search string, such as design defect and design flaw, because they

bring us many false positives.

The pilot searches also supported the definition of the scope of

this study. For instance, by means of pilot searches, we defined

the inclusion and exclusion criteria. Table 1 summarizes the

inclusion and exclusion criteria we applied in this study. Aiming

to restrict the papers included, we defined four inclusion criteria

and three exclusion criteria. For instance, as inclusion criteria

papers published in the Computer Science area and, as an example

of exclusion criteria, papers should be at least two pages long.

Table 1. List of SLR Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Papers published in Computer

Science

Papers published before 2000

Papers written in English Papers shorter than two pages

Papers available in electronic

format

Websites, leaflets, and grey

literature

Propose or use bad smell

detect tools

We decided to include only papers published after 2000 in our

study because of the publication of the Refactoring book by

Fowler [88] in 1999. This book defines the most well-known bad

smells. The pilot searches have also not returned any relevant

paper before 2000. Therefore, our study began with the search for

papers published since 2000 until 2015. However, after

conducting the snowballing step, a search approach that uses

citations in papers from a SLR as reference list to identify

additional papers not covered by the SLR [99], we found relevant

research papers published since 1993.

2.3 Electronic Data Sources
We run the defined search string in July 2015 in six electronic

data sources: ACM Digital Library1, IEEE Xplore2, Science

Direct3, Scopus4, Web of Science5, and Engineering Village6.

BibTeX and text files (in this case, converted to BibTeX) were

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3http://www.sciencedirect.com/
4http://www.scopus.com/
5http://webofknowledge.com/
6http://www.engineeringvillage.com/

imported to the JabRef7 tool to manage the references. We

manually download the BibTeX files of papers from ACM Digital

Library, one by one, because it does not support automatic

downloading. For the other electronic data sources, we were able

to download the BibTeX or text file automatically.

Figure 1 illustrates the steps we followed for selecting papers with

the search string executed in the six aforementioned electronic

data sources. At first, we start with 1002 studies: 429 from ACM

Digital Library (ACM), 65 from IEEE Xplore (IEEE), 10 from

ScienceDirect (SD), 145 from Scopus (SC), 217 from Web of

Science (WoS), and 136 from Engineering Village (EV).

Figure 1. Steps for Selection of Papers

We then followed a five-step refinement process in order to select

the final set of primary studies, as follows. Refinement 1 removed

duplicated studies, resulting in 710 studies. Refinement 2

discarded non-papers, such as technical reports and conference

calls. After this refinement, we obtained 520 papers. In

Refinement 3, we read metadata from these 520 papers and kept

only 99 studies in accordance with all inclusion and exclusion

criteria. We then conducted a full-text paper read for these 99

papers, aiming to discard work that does not propose or use a bad

smell detection tool, and kept 65 studies (Refinement 4). Finally,

in Refinement 5, we conducted a snowballing procedure on the 65

papers, looking for citation of tools not covered by this set. After

this step, we are able to retrieved 42 additional papers. Therefore,

at the end, we obtained 107 studies according to the inclusion and

exclusion criteria for data extraction. The papers used to extract

data from tools are listed in our research group website [100] and

their references (used in this paper) are from [1] to [80]. With

respect to references, we prioritize papers that propose tools.

When we were not able to find it, we relied on a paper that uses or

cites a tool.

2.4 Data Extraction
For data extraction, we conducted a careful full-text read of the

107 selected primary papers. With respect to release year of tools,

we considered the first identified value in a priority order. First,

the integration year of an approach or algorithm for smell

detection to an existing tool. If this data was not available, we

considered the year of the paper that presented the tool. In case of

not available information, we adopted the year of the first

commercial off-the-shelf tool release. Finally, we considered the

year of the earliest release of a tool documented on the Web.

7http://jabref.sourceforge.net/

By executing the SLR protocol, we found 84 bad smell detection

tools. We recorded the extracted data about each tool in a

spreadsheet for analysis, as well as relevant data from read papers

that could be useful in writing this paper. We faced some

difficulties in finding data related to some tools. For instance,

some papers do not summarize the types of bad smells detected by

the tool or they do not have a specific section to describe features

of the tool (such as compatible language and applied detection

technique). We tried to obtain as much information about the 84

tools as we could by searching on the Web.

2.5 Reporting
Since some bad smells have the same definition, but with different

names, it was necessary to treat these cases for data analysis. We

decided to consider the bad smells that shared a similar definition

using a unique term, based on the Fowler's definition [88]. Table 2

lists the three bad smells that presented this naming clash

problem. This table also shows the alternative names to the same

bad smell. For instance, we considered Brain Method and God

Method as alternative names of Long Method. The data analysis

presented in Section 3 covers the entire set of 84 tools found.

However, we considered only the 29 tools available online for

download in our comparative study presented in Section 4.

Table 2. List of Bad Smells with Alternative Terms

Bad Smell Alternative Terms

Duplicated

Code

Code Clone, Clone Class, Clone Code, Cloned

Code, Code Duplication, Duplicated Prerequisites

Large Class
Big Class, Blob, Brain Class, Complex Class, God

Class

Long

Method
Brain Method, God Method

3. RESULTS
This section presents the results of the systematic literature

review. Section 3.1 reports an overview of the 84 tools we found

in this study by release year. Sections 3.2 to 3.4 aim to answer the

research questions RQ1 to RQ3 presented in Section 2.1.

3.1 Overview of Tools by Release Year
Figure 2 illustrates the number of bad smell detection tools by

release year. We were not able to retrieve the release year of one

tool, namely Analyst [18]. Therefore, we did not take into account

this tool in Figure 2.

Figure 2. Number of Detection Tools Released by Year

Data in Figure 2 show a high number of bad smell detection tools

released from 2005 to 2014. In fact, there is an increase tendency

in the number of released tools, with a peak in 2012 with 16

released tools. Moreover, the highest number of proposed tools is

in recent years, 2012 and 2014, although in 2013 it was released

only one tool.

3.2 List of Bad Smell Detection Tools
The previous section shows that there is a high number of bad

smell detection tools proposed and used in the literature.

However, there is no study for summarizing them. Therefore, this

section aims to answer the first research question (RQ1), defined

as follows.

RQ1: What are the bad smell detection tools proposed or used in

literature papers?

To answer this question, Table 3 presents the 84 bad smell

detection tools we found in the literature review. In our study, we

included tools to detect bad smells, even when the tool provides

additional features, such as refactoring. We divided these tools in

three categories: the first with the 29 tools that we were able to

download and install (proposed or cited in literature); the second

with the 54 tools proposed in literature but unavailable online for

download; and the third group with one tool only cited in

literature and not available for download.

Table 3. List of Bad Smell Detection Tools Found in this SLR

29 Tools Available Online for Download and Installation

Borland Together [77], CCFinder (CCFinderX) [29], Checkstyle

[19], Clone Digger [8], Code Bad Smell Detector [22], Colligens

[45], ConcernReCS [1], ConQAT [13], DECKARD [26], DuDe

[75], Gendarme [53], inCode [77], inFusion [19], IntelliJ IDEA

[17], iPlasma [43], Java Clone Detector (JCD) [28], jCosmo

[71], JDeodorant [70], NiCad [10], NosePrints [53], PMD [19],

PoSDef [9], SDMetrics [62], SpIRIT (JSpIRIT) [72], Stench

Blossom [49], SYMake [67], TrueRefactor [20], Understand

[65], Wrangler [37]

54 Tools Proposed in Literature but Unavailable Online

Absinthe [66], Anti-pattern Scanner [76], Arcoverde et al. [3],

AutoMeD [78], Bad Smell Detection Tool (BSDT) [12], Bad

Smells Finder [21], Bauhaus [59], Bayesian Detection Expert

(BDTEX) [33], Bavota et al. [5], Baxter et al. [6], Bug Forecast

[16], Clone Detector [64], CloneDetective [27], CocoViz [7],

CodeSmellExplorer [57], CodeVizard [79], CP-Miner [38],

Crespo et al. [11], Crocodile [63], DÉCOR [47], Dup [4],

Duploc [14], EvoLens [58], Hamza et al. [23], Hayashi et al.

[24], Hist-Inspect [42], iSPARQL [34], It’s Your Code (IYC)

[36], JCodeCanine [52], JSmell [61], Kaur and Singh [30],

Keivanloo and Rilling [31], Kessentini et al. [32], Komondoor

and Horwitz [35], Lui et al. [39], Matthew Munro [48], Mens et

al. [46], Pradel et al. [56], PROblem DEtector O-O System

(PRODEOOS) [44], Reclipse Tool Suite [73], Refactoring

Browser [69], Ribeiro and Borba [60], SCOOP [40], Scorpio

[25], Sextant [15], Smellchecker [55], SolidFX [68], Stasys

Peldzius [54], SVMDetect [41], VCS-Analyzer [2], Wang et al.

[74], WebScent [50], Xquery-based Analysis Framework (XAF)

[51], Zang et al. [80]

1 Tool Cited but Unavailable Online for Download

Analyst [18]

In Table 3, a reference following each tool means either: a paper

that proposes the tool (when it is available), a paper that uses the

tool, a paper that cites the tool, or the tool’s website. It is

important to highlight that we only downloaded tools easily

available online, that we found by searching on the Web or with

an explicit link address in the selected paper. That is, we have not

contacted authors or developers of tools to get access to a specific

tool because we believe that actual users would not do this kind of

direct contact.

3.3 Main Features of Detection Tools
This section presents and discusses the results of our systematic

literature review with respect to the second research question

(RQ2), defined as follows.

RQ2: Which are the main features of these tools?

By analyzing available data of the 84 tools, we observed that

about 35.7% of the tools (30 in total) are plug-ins and 35.7% (30)

are standalone applications. In addition, 4.7% (i.e., 4 tools) are

available both as a plug-in and as a standalone application. These

four tools are ConQAT [13], NosePrints [53], PMD [19], and

SpIRIT (we call JSpIRIT from now on) [72]. We could not find

information about the availability of 19 tools (i.e., 22.6%), despite

of reading the tool papers and looking on the Web.

Furthermore, 35 bad smell detection tools (41.6%) have

documentation available online. In this study, we considered

website, tutorial, or research papers with a tool description as

available documentation. Moreover, 60 tools (71.4%) provide a

graphical user interface (GUI) and only four tools do not provide

GUI. For the remaining 20 tools (23.8%), this information was

unavailable.

Figure 3 shows the number of tools that aim to detect bad smells

in some of the most popular programming languages. We

presented data for nine of the top-ten most popular programming

languages based on the IEEE Spectrum8 ranking. Only for

language R, the 6-th most used programming language

worldwide, we did not find a bad smell detection tool. This

ranking rely on data from different sources, such as GitHub,

Google, and Stack Overflow. Although nine of the 10 most

popular languages have at least one detection tool, there is a

concentration of proposed tools for only three languages: Java, C,

and C++. Moreover, languages such as PHP and JavaScript have

few compatible tools. These findings point out to a research

opportunity in less explored languages.

Figure 3. Programming Languages Tools Analyze

8http://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2015

Figure 4 illustrates the programming languages that tools were

developed. The ten listed languages were all languages for which

we found implemented tools. Again, Java is predominant,

followed by C and C++, in accordance with the top-ten languages

from Spectrum. Moreover, some less popular languages appear in

the list, such as Smalltalk and Erlang, with few developed tools.

Figure 4. Programming Languages Tools Were Developed

With respect to the detection strategies, we found that 31 out of

the 84 tools are metric-based (i.e., around 37% of the tools). For

comparison, 15 (18%), 6 (7%), 5 (6%), and 3 (3.5%) of the tools

are based on trees (such as AST), textual analysis, Program

Dependence Graph (PDG), and token analysis, respectively.

Moreover, 11 tools (approximately 13%) uses other strategies,

such as machine learning and Logic Meta-programming (LMP).

We were not able to find the detection technique applied by 17 of

the 84 tools (around 20%). Note that the same tool may use

combinations of detection techniques. Hence, the overall

percentage may not be equal to 100%.

3.4 Detected Bad Smells
In addition to the features of selected tools presented in the

previous section, another important feature of these tools is the list

of detectable bad smells. Therefore, this section summarizes bad

smells detected by each tool. In other words, we aim to answer the

following research question.

RQ3: Which are the most frequent types of bad smells these tools

aim to detect?

In total, this SLR found 61 different bad smells that tools can

detect. From the 22 bad smells defined by Fowler [88], the found

tools aim to detect 20 of them. The exceptions are Alternative

Classes with Different Interfaces and Incomplete Library Class. In

addition to 20 bad smells defined by Fowler, 41 smells defined by

other authors [5][33][41][69][72] are detectable by the tools.

These bad smells include Dispersed Coupling [72], Functional

Decomposition [33], and Spaghetti Code [5], for instance. Figure

5 presents the top-ten most frequent bad smells that the found

tools aim to detect. We can point out that all ten most recurrent

smells are from Fowler's book.

Figure 5 also represents the percentage of tools that aim to detect

each bad smell with respect to the entire set of 84 found tools. We

highlight that Duplicated Code and Large Class are by far the

major targets of detection tools. More than 40% of tools target at

least one of these bad smells. One interesting question may

emerge. Why are developers and researchers more interested in

detecting these smells than others? The answer could be the high

relevance of Duplicated Code to software engineering research. In

the case of Large Class, we believe that it is target of many tools

because it is probably one of the easiest bad smells to detect (in

addition to its relevance to software engineering research).

Figure 5. Top-ten Most Recurring Bad Smells

4. A COMPARATIVE STUDY

This section presents a comparative table of the 29 bad smell

detection tools that we were able to download and install. We also

performed a detailed comparative study of four tools, namely

inFusion, JDeodorant, PMD, and JSpIRIT. Section 4.1 shows the

comparison of the 29 tools and explains the criteria used to select

the 4 tools for the comparative study. Section 4.2 presents the two

bad smells (Large Class and Long Method) we choose to analyze

in two software systems, namely JUnit [101] and MobileMedia

[85]. Section 4.3 presents the overall number of bad smells

detected by each tool. Based on these results, Section 4.4 reports

and discusses the agreement among tools with respect to the

detection of two bad smells in the selected systems. Finally,

Section 4.5 verifies recall and precision of the chosen detection

tools with respect to a reference list of bad smells.

4.1 Selection of Detection Tools
We found 84 bad smell detection tools in the systematic literature

review reported in Sections 2 and 3. Since we could not get

detailed information about all 84 tools, Table 4 presents general

information of a selected set of 29 tools that we were able to

download and install. In this table, “NA” means that data are not

available (e.g., we were not able to find the data) and “AST” in

the column Detection Technique means that the tool analyzes the

Abstract Syntax Tree of a program. As far as information is

available, we provide partial data about all 84 tools in the research

group website [100].

We selected four bad smell detection tools for analysis in the

comparative study, namely inFusion, JDeodorant, PMD, and

JSpIRIT. The selection process was conducted as follows. First,

we choose the Java programming language to study, since it is the

most common language tools analyze (see Figure 3). We adopted

similar criteria to select tools by their sets of bad smells, discussed

in Section 4.2. We then restrict the set of tools to include only

tools that are free for use, at least in a trial version. After applying

these criteria, we end up with eight tools from the 29 listed in

Table 4: Checkstyle, inFusion, iPlasma, JDeodorant, PMD,

JSpIRIT, Stench Blossom, and TrueRefactor. However,

Checkstyle, iPlasma, TrueRefactor, and Stench Blossom have

been later discarded by different reasons, as discussed below.

In our study, we discarded Checkstyle because it was not able to

detect any instance of the studied bad smells in the selected

software systems. We also discard iPlasma because we could not

run the tool properly. In addition, we are aware that the same

research group developed both iPlasma and inFusion. Therefore,

these tools probably follow similar detection strategies. We have

not used TrueRefactor in this comparative study because it does

not provide an executable file in the package we downloaded.

Finally, we also discarded Stench Blossom because it lacks a bad

smell occurrence list (Stench Blossom is a visualization tool with

no listing feature). Therefore, it is hard to validate their results, for

instance, to calculate recall, precision, and agreement.

4.2 Selection of Bad Smells and Applications
As discussed in Section 3.4, the three most frequent bad smells

detected by tools are Duplicated Code, Large Class, and Long

Method. Since we are interested in investigating agreement among

tools for the same bad smell, it seems natural for us to choose

these three bad smells because most tools are able to detect them.

However, we discard Duplicated Code because the nature of this

bad smell makes it hard to quantity the aimed results: recall,

precision, and agreement. In other words, we cannot easily

compare the results of Duplicated Code neither among tools nor

with the reference list because style of the output results vary a lot

from one tool to another. Therefore, this comparative study

focuses the analysis only on Large Class and Long Method.

For this comparative study, we selected two different software

systems: JUnit version 4 [101] and MobileMedia version 9

(object-oriented version) [85]. JUnit is an open source Java testing

framework and MobileMedia [85] is a software product line

(SPL) for applications that manipulate photo, music, and video on

mobile devices. Table 5 presents the number of classes, methods

and lines of code of JUnit and MobileMedia. We choose these two

software systems because they have been recurrently used in

previous quality and maintainability-related studies

[85][87][93][95]. JUnit is a well-known medium size open source

project. We rely on JUnit to assess if tools are able to detect bad

smells in a larger software system. Moreover, we have access to

the MobileMedia developers and experts, and then we can recover

a reference list of bad smells for MobileMedia.

With respect to the MobileMedia reference list protocol, we relied

on two experts who used their own strategy for detecting,

individually and manually, the bad smells in the classes and

methods of the system. As a result, they returned two lists of

entities. We merged these lists and discussed the findings with a

Table 4. List of Bad Smell Detection Tools Available for Download

Tool Name Plug-in Detected Bad Smells
Language Detection

Technique

Free for

Use
Guide GUI

Release

Year Developed Detect

Borland Together Yes Duplicated Code Java C#, C++, Java Metrics No Yes Yes 2011

CCFinder (CCFinderX) No Duplicated Code C++ C, C#, C++, etc. Token Yes Yes Yes 2002

Checkstyle Yes
Duplicated Code, Large Class, Long

Method, Long Parameter List
Java Java NA Yes Yes Yes 2001

Clone Digger NA Duplicated Code Python Java, Lua, Python Tree Yes Yes Yes 2008

Code Bad Smell

Detector
No

Data Clumps, Switch Statements, and

3 other
Java Java AST Yes No No 2014

Colligens Yes NA C C NA Yes Yes Yes 2014

ConcernReCS Yes
Concern Smells: Primitive Concern

Constant, and 5 other
Java Java

Concern

map
Yes Yes Yes 2012

ConQAT Both Clone Code Java
ABAP, ADA,

C++, C#, Java
Metrics No Yes Yes 2005

DECKARD No Clone Code C Java AST Yes Yes No 2007

DuDe No Clone Code Java
Language

independent

Textual

analysis
Yes No Yes 2005

Gendarme No
Duplicated Code, Large Class, Long

Method, and 4 other
C# .NET, Mono Rules Yes Yes Yes 2006

inCode Yes
Data Class, Data Clumps, Duplicated

Code, and 2 other
Java C, C++, Java NA No Yes Yes 2013

inFusion No
Data Class, Data Clumps, Duplicated

Code, and 2 other
NA C, C++, Java NA No Yes Yes 2011

IntelliJ IDEA No
Data Clumps, Feature Envy, Large

Class, and 4 other
NA

Java, JavaScript,

and 4 others
NA No Yes Yes 2001

iPlasma No
Duplicated Code, Feature Envy,

Intensive Coupling, and 4 other
Java C++, Java

Textual

analysis
Yes Yes Yes 2005

Java Clone Detector No Duplicated Code C++ Java Tree Yes Yes No 2009

jCosmo No
InstanceOf, Switch Statement,

Typecast
NA Java Tree NA Yes Yes 2002

JDeodorant Yes
Feature Envy, Large Class, Long

Method
Java Java

Metrics,

AST
Yes Yes Yes 2007

JSpIRIT Both
Data Class, Dispersed Coupling,

Feature Envy, and 5 other
Java

C++, Java,

Smalltalk
Metrics Yes Yes Yes 2014

NiCad Yes Duplicated Code C C, C#, Java, etc. NA Yes Yes Yes 2011

NosePrints Both
Feature Envy, Inappropriate Intimacy,

Large Class, and 5 other
NA NA NA No No Yes 2008

PMD Both
Duplicated Code, Large Class, Long

Method, Long Parameter List
Java

C, C#, C++, Java,

PHP, and 11 other
NA Yes Yes Yes 2008

PoSDef Yes NA C# UML diagrams Metrics Yes No Yes 2014

SDMetrics No Large Class Java UML diagrams NA No Yes Yes 2012

Stench Blossom Yes Comments, Data Clumps, and 4 other Java Java Metrics Yes Yes Yes 2010

SYMake No
Cyclic Dependency, Duplicated

Prerequisites
NA C and Java NA Yes Yes Yes 2012

TrueRefactor No Lazy Class, Long Method, and 3 other Java Java Graph Yes Yes Yes 2011

Understand No NA NA C, C#, C++, etc. NA No Yes Yes 2008

Wrangler Yes Duplicated Code Erlang Erlang
Textual

analysis
Yes Yes Yes 2010

developer of the system to achieve a consensus and validate the

entities that present a bad smell. The result of this discussion

generated the final reference list used in this study. Table 6

presents the total number of Large Classes and Long Methods

found in this system, according to the previously described

protocol.

Table 5. Size metrics of JUnit and MobileMedia

Size Metrics JUnit MobileMedia

Number of Classes 983 55

Number of Methods 2948 290

Lines of Code (LOC) 26456 3216

Table 6. Reference list of bad smells in MobileMedia

Bad Smell Occurrences

Large Class 7

Long Method 6

Total 13

4.3 Overall Results
For this comparative study, we configured two personal

computers with two different operating systems. Two authors

performed the same procedures, each one in a different computer.

We decided to run our experiments in two different computers to

assure the correctness of obtained data, through comparison of

obtained results. Then, we aimed to minimize possible human

mistakes in the retrieved results. We first installed the selected

standalone tools in both computers, according to the tool version

that is available for the specific operating systems. Then, we

installed the plug-in tools in different Eclipse IDE instances. We

rely on the default tool settings; i.e., no specific configuration was

defined to any tool. Next, we used the detection tools to analyze

the source code of the two Java applications: JUnit and

MobileMedia.

After each tool has finished its execution, we recorded their

detection results for the two bad smells studied in this study.

Finally, we compared the results obtained in each personal

computer to identify possible divergences. For all evaluated tools,

both executions resulted in the same detected bad smell instances.

Table 7 lists the number of detected Large Classes (LC) or Long

Methods (LM) in JUnit and MobileMedia by each detection tool.

Note that, in our study, we do not know the detection techniques

applied by inFusion and PMD. On the other hand, we found that

JSpIRIT uses metrics and JDeodorant uses both metrics and AST

technique to detect bad smells. Considering that some tools apply

unknown techniques, detection results may be different. We can

observe that JDeodorant indicates the highest number of Large

Class and Long Method instances in both software systems. In

addition, apart from JDeodorant, tools have not detected Long

Method instances in JUnit.

Table 7. Bad Smell Detection in JUnit and MobileMedia

Tool Name
Junit MobileMedia

LC LM LC LM

inFusion 0 0 1 2

JDeodorant 88 48 11 12

PMD 12 0 1 3

JSpIRIT 6 0 2 5

4.4 Agreement
To assess agreement among the selected detection tools, we

compute the AC1 statistic coefficient [89]. It is a robust

agreement coefficient alternative to the Cohen’s kappa [83] and

other common statistics for inter-rater agreement. It takes a value

between 0 and 1, and reports the level of agreement using the

following scale: Poor (< 0.20), Fair (0.21 to 0.40), Moderate (0.41

to 0.60), Good (0.61 to 0.80), and Very Good (0.81 to 1.00) [81].

Table 8 shows the agreement computed for the two analyzed

applications, JUnit and MobileMedia, in terms of overall

agreement (OA), AC1 coefficient (AC1), and 95% confidence

interval (CI) of the detection tools. Note that, since Cohen's Kappa

computes agreement between only two raters and we have

multiple agreements (there are 4 tools to be compared), we

decided to use a different agreement metric.

Regarding the JUnit analysis, we observed that the tools present a

“Very Good” agreement in terms of Large Class detection results.

However, for the same application, we were not able to compute

agreement with respect to Long Method because only one tool

(namely, JDeodorant) was able to identify this type of smell.

Regarding the MobileMedia analysis, we conclude that the tools

present a “Very Good” agreement in detecting both Large Class

and Long Method.

In general, these results show the evaluated tools provide

redundant detection results. However, we must consider the

computed agreement may be high because the low number of bad

smells in the applications. Therefore, a high agreement may

indicate they agree with respect to non-detected elements instead

of with detected bad smells.

4.5 Recall and Precision
To assess the accuracy of the studied tools to detect Large Class

and Long Method, we computed recall and precision based on the

bad smell reference list for the MobileMedia application. Table 9

presents the calculated values for each detection tool, with respect

Table 8. Agreement of Tools for JUnit and MobileMedia

 Large Class Long Method

Application OA AC1 95% CI OA AC1 95% CI

JUnit 88.55% 0.87 [0.84, 0.90] - - -

MobileMedia 88.79% 0.87 [0.79, 0.94] 97.27% 0.97 [0.96, 0.98]

Table 9. Recall and Precision of the Tools for MobileMedia Only

Bad Smell
Recall Precision

inFusion JDeodorant PMD JSpIRIT inFusion JDeodorant PMD JSpIRIT

Large Class 14% 14% 14% 14% 100% 9% 100% 50%

Long Method 33% 33% 50% 67% 100% 17% 100% 80%

to MobileMedia only (for Junit, we have no reference list). With

respect to recall, PMD and JSpIRIT provided the highest results.

For instance, PMD and JSpIRIT achieved 50% and 67% of recall,

respectively, when detecting Long Method. PMD is also the tool

with the most accurate detection results for Large Class in the

MobileMedia system. When analyzing precision, inFusion and

PMD show the highest values. These tools always achieved 100%

precision for both bad smells in the MobileMedia system. In

general, JDeodorant scored the lowest results for both recall and

precision. In turn, inFusion presented satisfactory results

regarding precision, but low recall rates for both studied bad

smells.

5. LESSONS LEARNED
In this section, we discuss some of the lessons learned in this

study with respect to both the systematic literature review

(Section 3) and the comparative study of detection tools (Section

4). Section 5.1 discuss some lessons with respect to the

Duplicated Code bad smell. Section 5.2 summarizes the lessons

about Large Class and Long Method detection. Finally, Section

5.3 presents usability issues we faced while installing and using

the bad smell detection tools.

5.1 Duplicated Code
As pointed in Section 3.4, Duplicated Code is the most frequent

bad smell that tools aim to detect. However, as discussed in

Section 4.2, tools for detecting this smell present some usability

issues that prevent us to quantitatively investigate recall,

precision, and agreement of the tools. In fact, as discussed by

Bellon et al. [82], Duplicated Code is a complex smell to detect.

Therefore, we identify a research opportunity for tool developers

to work on how to better present results of this bad smell in an

easier way to be quantifiable and compared.

5.2 Large Class and Long Method
In the comparative study of tools with respect to Large Class and

Long Method detection, we conclude that the proposed tools

provide redundant detection results. We observed this redundancy

by the high values of agreement for the studied tools that point to

a “Very Good” agreement. Regarding recall, the tools presented

low to medium rates for Large Class detection, indicating a

possible open challenge. In respect to precision, two tools, namely

inFusion and PMD, provided maximum precision (100%) that

indicates to perfect accuracy of these tools in this case.

As discussed in Section 4.3, we were not able to know the

detection techniques applied by inFusion and PMD. In turn, we

observed that JDeodorant and JSpIRIT rely on metric-based

detection strategies. Therefore, we may infer the redundancy may

be due to similar detection techniques. In the context, by

exploring alternative strategies than metrics, we may obtain

different and, maybe, more effective results.

5.3 Usability Evaluation

By installing and using bad smell detection tools, we identified

some usability issues about the tools that are worth to mention.

Table 10 presents some features we observed in the four evaluated

tools. For each tool, an “X” means that a tool supports a related

feature. We can observe that inFusion is the only tool that

supports all five features, although two of these are available only

in the full and paid version of the tool.

With respect to the Result Export feature, for instance, we

expected that results about the detected bad smells were easily

exportable, for instance, to text, CSV or other file formats.

However, some tools do not provide any way of exporting the

results. In the set of the four tools evaluated in Section 4, only

JDeodorant supports this feature and inFusion supports in a paid

tool version. Another desirable feature is to highlight the smell-

related source code. This feature makes it clear the source code

related to a bad smell. All four detection tools somehow support

this feature.

Table 10. Applicability Features of the Tools

Feature inFusion JDeodorant PMD JSpIRIT

Result export
X (in full

version)
X

Highlight smell
occurrences

X X X X

Allow detection

settings
X X X X

Graph
visualization

X

Detected Smell

Filtering

X (in full

version)
X X

In the case of metric-based detection strategies, tools usually

provide the possibility of changing thresholds for metrics. Other

tools also provide similar configuration options in order to set

how sensible bad smell detection is in each specific context. All

evaluated tools also support specific setting of the detection

strategy. Finally, it is also desirable some enhanced visualization

means to present the detection results using, for instance,

graphical elements such as charts. Only inFusion provides such

support. Apart from JSpIRIT, the evaluated tools support the

Filtering feature . This feature allows hiding part of the results by

setting visualization options.

In addition to the aforementioned features, we found that some

usability issues could hinder the tool user experience. For

instance, we faced some usability problems, such as difficulty to

navigate between bad smell occurrences (in general, results are

showed in long lists without summarization), difficulty to identify

the source code related to a smell detection, and lack of advanced

filters for specific bad smells we want to detect.

In general, we also observed that the tools do not provide data

visualization through statistical analysis, counters of detection

results, or results presentation by charts. These features could be

useful in the comparison of tools. Furthermore, PMD and JSpIRIT

do not provide way to export the results. This feature is helpful in

data analysis and comparison. In this context, we suggest that

developers of new detection tools should be aware of the possible

usages of their tools, considering these observations.

6. THREATS TO VALIDITY
Even with the careful planning, different factors may affect these

research results by invalidating its main findings. We discuss

below strategies taken to reduce the impact of these factors on the

validity of our research results. Some of these actions, mainly

related to our research method, we adopted to increase the study

confidence, aiming to reduce the threats to the study validity.

Scope and Strategy – For the systematic literature review, we

selected six different electronic data sources, but there may be

other sources with relevant papers. Nevertheless, we consider

minimizing this threat by the use of data sources that aggregate

papers from diversified publishers (for instance, Scopus and Web

of Science). Furthermore, we attend to answer questions clearly

and unambiguously, even if the answers provided are not the most

conclusive.

Validation and Generalization of Data and Results – With

respect to the review protocol, we designed a search string for

restricting our research. This string includes more than 10

synonyms for “bad smell” and, so, we expect to have achieved a

sufficient number of papers in the studied context. In addition, we

performed a pilot search to define the terms to appear in the

search string. However, we cannot assume that all existing related

papers were included through this filtering.

Search String Execution – We run our search string in two

different computers, and we downloaded the BibTeX and text

files three times, obtaining identical results. Thereby, we expected

to reduce errors in string run task with respect to human factors.

In case of text files, we converted them to the BibTeX style of

references. In case of ACM data source, we were not able to

export references automatically and, then, we transcribed

manually the main data about each found papers (author, title,

year, and journal) in a BibTeX file.

To eliminate repeated papers and keep only papers (Refinements

1 and 2). One of us verified this condition manually and another

audited the results. In Refinement 3 (read metadata and include

papers), we performed three classification steps. In the first step,

one author read each metadata paper and scored it (-2 for out of

context paper, -1 for papers that seems to propose or use a tool

without explicit use of search string words in metadata, 0 for

doubt, 1 for papers that use a tool, and 2 for papers that propose a

tool). In our study, papers scored by -2, -1, and 0 should be

discarded. In the second step, another author repeated the previous

procedure. This task returned another score for metadata. Finally,

a third author decided to include or not a paper based on the

scores given by the other two researchers. In case of doubt, the

paper was included for the next step. We believe this protocol

minimized biases by considering the point of view of three

authors, and the agreement of at least two of them.

Full-text Analysis and Data Extraction – One of the authors

was responsible to read fully the selected papers and extract

proposed or used bad smell detection tools from them. Although

the careful conduction of this, with no deadline for completion,

we do not take other measure for risk reduction. Only an analysis

performed by another author in 10% of randomly chosen data. In

this context, some tools that detect bad smells may have been

wrongly discarded. For instance, we discarded tools such as

Archimetrix [98], FindBugs [90], and VisTra [97], because we

considered that they are not related to bad smells detection

according to our bad smell definition based on Fowler [88].

Cataloging Features of the Tools – We were not able to find the

name of some tools. In these cases, we named a tool with the

authors who proposed it. In turn, some tools were, in fact, an

evolution of previous tools and, so, we named them with the name

of the previous tool. Another issue in cataloging features was that

some papers did not specify the detected bad smells. Therefore,

we abstracted the maximum types of bad smells informed to

compose the table of tools and features, available in the research

group website [100].

Comparison of the Tools – Detection tools aim to identify bad

smell in different ways, using diverse techniques and procedures.

Moreover, some tools do not provide customization of detection

mechanisms, such as thresholds for metrics. Therefore, we

decided to use all the evaluated tools in their default

configurations. However, other configuration settings would

probably give different results.

7. RELATED WORK
To the best of our knowledge, we did not find work that

performed a systematic literature review and an extensive

evaluation of bad smell detection tools. In spite of that, we found

some studies [47][86][94] that can be considered related to our

research.

Fontana et al. [86] present a closely related study. They discussed

the findings of a literature review (but, not systematic) covering

seven detection tools, namely Checkstyle, DÉCOR, inFusion,

iPlasma, JDeodorant, PMD, and Stench Blossom. Furthermore,

they evaluated four tools, Checkstyle, inFusion, JDeodorant, and

PMD, using six versions of a same software system as input. They

concluded that the tools provide significantly different detection

results for a same bad smell, and some results are redundant. In

respect to agreement of tools, they found significant agreement

results only for two bad smells: Large Class and Long Parameter

List.

Another related work, by Moha et al. [47], evaluates detection

tools, but without providing a systematic literature review. The

authors present a comparative study of tools including a new one

proposed by them, called iPlasma. By using a list of bad smells

built through manual inspection of source code, they were able to

compute recall and precision for iPlasma. However, their study

does not compare an extensive set of detection tools, and there is

no agreement computation.

We have previously conducted an ad hoc literature review of

duplicated code detection tools [96]. In this previous study, we

investigated the available tools for single software projects in the

context of cross-project detection of Duplicated Code. In this

review, we found 20 tools and conducted a comparative study

among tools that were available online for download. In general,

several usability issues may occur in the analyzed tools, such as

the lack of an option to export results and problems related to

usability of the tools. Finally, we proposed in this previous paper

[96] some guidelines for future implementation of detection tools,

considering our findings by studying these tools.

Unlike previous work, this paper provides an overview of the state

of the art in bad smell detection tools through a systematic

literature review. In addition, we present a comparative study of

tools available online for download and compatible with two of

the most frequent bad smells that tools aim to detect. We compute

agreement, precision and recall of these tools. Furthermore, we

discuss same usability issues of the bad smell detection tools

identified through the comparative study.

8. CONCLUSION
Bad smells are symptoms of anomalies in source code that can

indicate problems in a software system. Although we may conduct

manual detections of bad smells, some tools support this activity,

using different detection strategies and approaches. In this paper,

we present the results of a systematic literature review on bad

smell detection tools (Sections 2 and 3). We found a large set of

84 different tools, but only 29 of them are available online for

download.

With respect to the 84 tools, we observe that the amount of

standalone and plug-in tools are roughly the same. In addition, the

review results show that Java, C, and C++ are the top-three most

covered programming language for bad smell detection. Most of

the 84 tools are implemented in Java and rely on metric-based

detection technique. Finally, the review shows that Duplicated

Code, Large Class, and Long Method are the top-three bad smells

that tools aim to detect.

In addition to the systematic literature review, we conducted a

comparison of tools with respect to two of the most recurrent bad

smells that tool are designed to detect (Section 4). Through this

study, we observed that the analyzed tools provide redundant

detection results, given the high agreement coefficient computed.

The results of this comparative study indicate that JDeodorant is

the tools that indicates more instances of bad smells in its default

configuration. However, PMD achieved the most accurate

detection results for Large Class, considering both recall and

precision measurements. With respect to Long Method, the PMD

and JSpIRIT tools provided better results. They achieved 50% and

67% of recall, respectively. All tools presented some usability

issues discussed in the lessons learned (Section 5).

The main contributions of this paper can be summarized as

follows. We first present a systematic literature review of bad

smell detection tools that found 84 different tools, and catalogued

them by relevant features, such as detected bad smells,

programming language for detection of smells, and detection

techniques. We also performed a comparative study of tools

considering the most frequent bad smells that tools aim to detect

(Large Class and Long Method). Based on the literature review

and comparative study, we discuss quantitative (agreement, recall,

and precision) and qualitative data (lessons learned) about the

tools.

As future work, we suggest an investigation on the interest of

developers with respect to detection of some specific bad smell,

such as Duplicated Code, Large Class, and Long Method. Another

suggestion for future work is to study the redundancy of detection

tool results. In addition, developers of current and new detection

tools should be consider the usability issues discussed in this

paper and cover the less studied bad smells.

9. ACKNOWLEDGMENTS
This work was partially supported by CAPES, CNPq (grant

485907/2013-5), and FAPEMIG (grant PPM-00382-14).

10. REFERENCES
[1] Alves, P., Santana, D., and Figueiredo, E. ConcernReCS: Finding

Code Smells in Software Aspectization. In Proceedings of the 34th
International Conference on Software Engineering (ICSE), pp. 1463-
1464, 2012.

[2] Arcelli, F., Rolla, M., and Zanoni, M. VCS-analyzer for Software
Evolution Empirical Analysis. In Proceedings of the 8th
International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2014.

[3] Arcoverde, R., Macia, I., Garcia, A., and Von Staa, A. Automatically
Detecting Architecturally-Relevant Code Anomalies. In Proceedings
of the 3rd International Workshop on Recommendation Systems for
Software Engineering (RSSE), pp. 90-91, 2012.

[4] Baker, B. A Program for Identifying Duplicated Code. Computing
Science and Statistics, pp. 49-49, 1993.

[5] Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F.
An Experimental Investigation on the Innate Relationship between
Quality and Refactoring. Journal of Systems and Software, 2015.

[6] Baxter, I., Yahin, A., Moura, L., Anna, M., and Bier, L. Clone
Detection using Abstract Syntax Trees. In Proceedings of the 14th
International Conference on Software Maintenance (ICSM), pp. 368-
377, 1998.

[7] Boccuzzo, S. and Gall, H. Automated Comprehension Tasks in
Software Exploration. In Proceedings of the 24th International
Conference on Automated Software Engineering (ASE), pp. 570-574,
2009.

[8] Bulychev, P. and Minea, M. Duplicate Code Detection Using Anti-
unification. In Proceedings of the 2nd Spring/Summer Young
Researchers’ Colloquium on Software Engineering (SYRCoSE),
2008.

[9] Chaudron, M. R., Katumba, B., and Ran, X. Automated
Prioritization of Metrics-Based Design Flaws in UML Class
Diagrams. In Proceedings of the 40th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), pp. 369-
376, 2014.

[10] Cordy, J. and Roy, C. The NiCad Clone Detector. In Proceedings of
the 19th International Conference on Program Comprehension
(ICPC), pp. 219-220, 2011.

[11] Crespo, Y., López, C., Marticorena, R., and Manso, E. Language
Independent Metrics Support Towards Refactoring Inference. In
Proceedings of the 9th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE),
pp. 18-29, 2005.

[12] Danphitsanuphan, P. and Suwantada, T. Code Smell Detecting Tool
and Code Smell-Structure Bug Relationship. In Spring Congress on
Engineering and Technology (S-CET), pp. 1-5, 2012.

[13] Deissenboeck, F., Pizka, M., and Seifert, T. Tool Support for
Continuous Quality Assessment. In Proceedings of the 13th
International Workshop on Software Technology and Engineering
Practice (STEP), pp. 127-136, 2005.

[14] Ducasse, S., Rieger, M., and Demeyer, S. A Language Independent
Approach for Detecting Duplicated Code. In Proceedings of the 15th
International Conference on Software Maintenance (ICSM), pp. 109-
118, 1999.

[15] Eichberg, M., Haupt, M., Mezini, M., and Schäfer, T.
Comprehensive Software Understanding with SEXTANT. In
Proceedings of the 21st International Conference on Software
Maintenance (ICSM), pp. 315-324, 2005.

[16] Ferenc, R. Bug Forecast: A Method for Automatic Bug Prediction.
In Proceedings of the International Conference on Advanced
Software Engineering and Its Applications (ASEA), pp. 283-295,
2010.

[17] Fontana, F., Mangiacavalli, M., Pochiero, D., and Zanoni, M. On
Experimenting Refactoring Tools to Remove Code Smells. In
Proceedings of the Scientific Workshops on the 16th International
Conference on Agile Software Development Proceedings of the (XP),
2015.

[18] Fontana, F., Mariani, E., Morniroli, A., Sormani, R., and Tonello, A.
An Experience Report on Using Code Smells Detection Tools. In
Proceedings of the 4th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 450-
457, 2011.

[19] Fontana, F., Zanoni, M., Marino, A., and Mantyla, M. Code Smell
Detection: Towards a Machine Learning-based Approach. In
Proceedings of the 29th International Conference on Software
Maintenance (ICSM), pp. 396-399, 2013.

[20] Griffith, I., Wahl, S., and Izurieta, C. TrueRefactor: An Automated
Refactoring Tool to Improve Legacy System and Application
Comprehensibility. In Proceedings of the 24th International
Conference on Computer Applications in Industry and Engineering
(CAINE), 2011.

[21] Grigera, J., Garrido, A., and Rivero, J. A Tool for Detecting Bad
Usability Smells in an Automatic Way. Web Engineering, pp. 490-
493, 2014.

[22] Hall, T., Zhang, M., Bowes, D., and Sun, Y. Some Code Smells have
a Significant but Small Effect on Faults. Transactions on Software
Engineering and Methodology (TOSEM), 2014.

[23] Hamza, H., Counsell, S., Loizou, G., and Hall, T. Code Smell
Eradication and Associated Refactoring. In Proceedings of the 2nd
Conference on European Computing Conference (ECC), 2008.

[24] Hayashi, S., Saeki, M., and Kurihara, M. Supporting Refactoring
Activities using Histories of Program Modification. IEICE
Transactions on Information and Systems, pp. 1403-1412, 2006.

[25] Higo, Y. and Kusumoto, S. Enhancing Quality of Code Clone
Detection with Program Dependency Graph. In Proceedings of the

16th Working Conference on Reverse Engineering (WCRE), pp. 315-
316, 2009.

[26] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. DECKARD:
Scalable and Accurate Tree-based Detection of Code Clones. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE), pp. 96-105, 2007.

[27] Juergens, E., Deissenboeck, F., and Hummel, B. CloneDetective – A
Workbench for Clone Detection Research. In Proceedings of the
31st International Conference on Software Engineering (ICSE), pp.
603-606, 2009.

[28] Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. Do
Code Clones Matter?. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pp. 485-495, 2009.

[29] Kamiya, T., Kusumoto, S., and Inoue, K. CCFinder: A
Multilinguistic Token-based Code Clone Detection System for Large
Scale Source Sode. Transactions on Software Engineering (TSE), pp.
654-670, 2002.

[30] Kaur, R. and Singh, S. Clone Detection in Software Source Code
using Operational Similarity of Statements. Software Engineering
Notes (SEN), pp. 1-5, 2014.

[31] Keivanloo, I. and Rilling, J. Clone Detection Meets Semantic Web-
based Transitive Closure Computation. In Proceedings of the 1st
International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), pp. 12-16, 2012.

[32] Kessentini, M., Mahaouachi, R., and Ghedira, K. What You Like in
Design Use to Correct Bad-Smells. Software Quality Journal, pp.
551-571, 2013.

[33] Khomh, F., Vaucher, S., Guéhéneuc, Y., and Sahraoui, H. BDTEX:
A GQM-based Bayesian Approach for the Detection of Antipatterns.
Journal of Systems and Software (JSS), pp. 559-572, 2011.

[34] Kiefer, C., Bernstein, A., and Tappolet, J. Mining Software
Repositories with iSPAROL and a Software Evolution Ontology. In
Proceedings of the 4th International Workshop on Mining Software
Repositories (MSR), 2007.

[35] Komondoor, R. and Horwitz, S. Tool Demonstration: Finding
Duplicated Code using Program Dependences. Lecture Notes in
Computer Science, pp. 383-386, 2001.

[36] Kreimer, J. Adaptive Detection of Design Flaws. Electronic Notes in
Theoretical Computer Science, pp. 117-136, 2005.

[37] Li, H. and Thompson, S. Similar Code Detection and Elimination for
Erlang Programs. In Proceedings of the 12th International
Symposium on Practical Aspects of Declarative Languages (PADL),
pp. 104-118, 2010.

[38] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. CP-Miner: A Tool for
Finding Copy-Paste and Related Bugs in Operating System Code. In
Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation (OSDI), pp. 289-302, 2004.

[39] Liu, H., Ma, Z., Shao, W., and Niu, Z. Schedule of Bad Smell
Detection and Resolution: A New Way to Save Effort. Transactions
on Software Engineering (TSE), pp. 220-235, 2012.

[40] Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., and von Staa, A.
Supporting the Identification of Architecturally-relevant Code
Anomalies. In Proceedings of the 28th International Conference on
Software Maintenance (ICSM), pp. 662-665, 2012.

[41] Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y. G.,
Antoniol, G., and Aimeur, E. Support Vector Machines for Anti-
pattern Detection. In Proceedings of the 27th International
Conference on Automated Software Engineering (ASE), pp. 278-281,
2012.

[42] Mara, L., Honorato, G., Medeiros, F. D., Garcia, A., and Lucena, C.
Hist-Inspect: A Tool for History-sensitive Detection of Code Smells.
In Proceedings of the 10th International Conference on Aspect-
oriented Software Development (AOSD), pp. 65-66, 2011.

[43] Marinescu, C., Marinescu, R., Mihancea, P., and Wettel, R. iPlasma:
An Integrated Platform for Quality Assessment of Object-oriented
Design. In Proceedings of the 21st International Conference on
Software Maintenance (ICSM), 2005.

[44] Marinescu, R. Detecting Design Flaws via Metrics in Object-
oriented Systems. In Proceedings of the 39th International
Conference and Exhibition on Technology of Object-Oriented
Languages and Systems (TOOLS), pp. 173-182, 2001.

[45] Medeiros, F. An Approach to Safely Evolve Program Families in C.
In Proceedings of the SIGPLAN Conference on Systems,
Programming, and Applications: Software for Humanity (SPLASH),
pp. 25-27, 2014.

[46] Mens, T., Tourwé, T, and Muñoz, F. Beyond the Refactoring
Browser: Advanced Tool Support for Software Refactoring. In
Proceedings of the 6th International Workshop on Principles of
Software Evolution (IWPSE), 2003.

[47] Moha, N., Gueheneuc, Y., Duchien, L., and Le Meur, A. DECOR: A
Method for the Specification and Detection of Code and Design
Smells. Transactions on Software Engineering (TSE), pp. 20-36,
2010.

[48] Munro, M. Product Metrics for Automatic Identification of “Bad
Smell” Design Problems in Java Source-Code. In Proceedings of the
11th International Symposium on Software Metrics, pp. 15-15, 2005.

[49] Murphy-Hill, E. and Black, A. An Interactive Ambient Visualization
for Code Smells. In Proceedings of the 5th Symposium on Software
Visualization (SOFTVIS), pp. 5-14, 2010.

[50] Nguyen, H., Nguyen, H., Nguyen, T., Nguyen, A., and Nguyen, T.
Detection of Embedded Code Smells in Dynamic Web Applications.
In Proceedings of the 27th International Conference on Automated
Software Engineering (ASE), pp. 282-285, 2012.

[51] Nodler, J., Neukirchen, H., and Grabowski, J. A Flexible Framework
for Quality Assurance of Software Artefacts with Applications to
Java, UML, and TTCN-3 Test Specifications. In Proceedings of the
International Conference on Software Testing Verification and
Validation (ICST), pp. 101-110, 2009.

[52] Nongpong, K. Integrating “Code Smells” Detection with Refactoring
Tool Support. PhD thesis, University of Wisconsin-Milwaukee,
2012.

[53] Parnin, C., Görg, C., and Nnadi, O. A Catalogue of Lightweight
Visualizations to Support Code Smell Inspection. In Proceedings of
the 4th Symposium on Software Visualization (SOFTVIS), pp. 77-86,
2008.

[54] Peldzius, S. Automatic Detection of Possible Refactorings. In
Proceedings of the 16th International Conference on Information
and Software Technologies (ICIST), pp. 238-245, 2010.

[55] Pessoa, T., Monteiro, M., and Bryton, S. An Eclipse Plugin to
Support Code Smells Detection. 2012.

[56] Pradel, M., Jaspan, C., Aldrich, J., and Gross, T. Statically Checking
API Protocol Conformance with Mined Multi-Object Specifications.
In Proceedings of the 34th International Conference on Software
Engineering (ICSE), pp. 925-935, 2012.

[57] Raab, F. CodeSmellExplorer: Tangible Exploration of Code Smells
and Refactorings. In Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 261-262, 2012.

[58] Ratzinger, J., Fischer, M., and Gall, H. EvoLens: Lens-view
Visualizations of Evolution Data. In Proceeding of the 8th
International Workshop on Principles of Software Evolution
(IWPSE), pp. 103-112, 2005.

[59] Raza, A., Vogel, G., and Plödereder, E. Bauhaus – A Tool Suite for
Program Analysis and Reverse Engineering. In Proceedings of the
11th International Conference on Reliable Software Technologies
Reliable Software Technologies (Ada-Europe), pp. 71-82, 2006.

[60] Ribeiro, M. and Borba, P. Improving Guidance when Restructuring
Variabilities in Software Product Lines. In Proceedings of the 13th
European Conference on Software Maintenance and Reengineering
(CSMR), pp. 79-88, 2009.

[61] Roperia, N. JSmell: A Bad Smell Detection Tool for Java Systems.
MSc dissertation, California State University, 2009.

[62] SDMetrics – The Software Design Metrics Tool for UML.
http://www.sdmetrics.com (accessed January 15, 2016).

[63] Simon, F., Teinbruckner, F. S., and Lewerentz, C. Metrics Based
Refactoring. In Proceedings of the 5th European Conference on
Software Maintenance and Reengineering (CSMR), pp. 30-38, 2001.

[64] Singh, S. and Kaur, R. Clone Detection in UML Class Models using
Class Metrics. Software Engineering Notes (SEN), pp. 1-3, 2014.

[65] Singh, V., Snipes, W., and Kraft, N. A Framework for Estimating
Interest on Technical Debt by Monitoring Developer Activity
Related to Code Comprehension. In Proceedings of the 6th
International Workshop on Managing Technical Debt (MTD), pp.
27-30, 2014.

[66] Stevens, R., De Roover, C., Noguera, C., Kellens, A., and Jonckers,
V. A Logic Foundation for a General-Purpose History Querying
Tool. Science of Computer Programming, pp. 107-120, 2014.

[67] Tamrawi, A., Nguyen, H., Nguyen, H., and Nguyen, T. SYMake: A
Build Code Analysis and Refactoring Tool for Makefiles. In
Proceedings of the 27th International Conference on Automated
Software Engineering (ASE), pp. 366-369, 2012.

[68] Telea, A., Byelas, H., and Voinea, L. A Framework for Reverse
Engineering Large C++ Code Bases. Electronic Notes in Theoretical
Computer Science, pp. 143-159, 2009.

[69] Tourwé, T. and Mens, T. Identifying Refactoring Opportunities
using Logic Meta Programming. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering (CSMR),
pp. 91-100, 2003.

[70] Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. JDeodorant:
Identification and Removal of Type-checking Bad Smells. In
Proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 329-331, 2008.

[71] Van Emden, E., and Moonen, L. Java Quality Assurance by
Detecting Code Smells. In Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE), pp. 97-106, 2002.

[72] Vidal, S., Marcos, C., and Díaz-Pace, J. An Approach to Prioritize
Code Smells for Refactoring. Automated Software Engineering, pp.
1-32, 2014.

[73] Von Detten, M., Meyer, M., and Travkin, D. Reverse Engineering
with the Reclipse Tool Suite. In Proceedings of the 32nd
International Conference on Software Engineering (ICSE), pp. 299-
300, 2010.

[74] Wang, C., Hirasawa, S., Takizawa, H., and Kobayashi, H. A
Platform-Specific Code Smell Alert System for High Performance
Computing Applications. In Proceedings of the 28th International
Parallel & Distributed Processing Symposium Workshops
(IPDPSW), pp. 652-661, 2014.

[75] Wettel, R. and Marinescu, R. Archeology of Code Duplication:
Recovering Duplication Chains from Small Duplication Fragments.
In Proceedings of the 7th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 2005.

[76] Wieman, R. Anti-pattern Scanner: An Approach to Detect Anti-
patterns and Design Violations. Doctoral dissertation, Delft
University of Technology, 2011.

[77] Yamashita, A. and Moonen, L. To What Extent Can Maintenance
Problems be Predicted by Code Smell Detection? – An Empirical
Study. Information and Software Technology, pp. 2223-2242, 2013.

[78] Yang, L., Liu, H., and Niu, Z. Identifying Fragments to be Extracted
from Long Methods. In Proceedings of the 16th Asia-Pacific
Software Engineering Conference (APSEC), pp. 43-49, 2009.

[79] Zazworka, N. and Ackermann, C. CodeVizard: A Tool to Aid the
Analysis of Software Evolution. In Proceedings of the 4th
International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2010.

[80] Zhang, L., Sun, Y., Song, H., Wang, W., and Huang, G. Detecting
Anti-patterns in Java EE Runtime System Model. In Proceedings of
the 4th Asia-Pacific Symposium on Internetware, pp. 21, 2012.

[81] Altman, D. Practical Statistics for Medical Research. Chapman &
Hall, London, 1991.

[82] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E.
Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering (TSE), pp. 577-591, 2007.

[83] Cohen, J. A Coefficient of Agreement for Nominal Scales.
Educational and Psychosocial Measurement, 20, pp. 37-46, 1960.

[84] Dig, D., Manzoor, K., Johnson, R., and Nguyen, T. Refactoring-
Aware Configuration Management for Object-Oriented Programs. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE), pp. 427-436, 2007.

[85] Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U.,
Garcia, A., Soares, S., Ferrari, F., Khan1, S., Castor Filho, F.,
Dantas, F. Evolving Software Product Lines with Aspects. In
Proceedings of 30th International Conference on Software
Engineering (ICSE), pp. 261-270, 2008.

[86] Fontana, F., Braione, P., and Zanoni, M. Automatic Detection of Bad
Smells in Code: An Experimental Assessment. Journal of Object
Technology, 2012.

[87] Fontana, F., Rolla, M., and Zanoni, M. Capturing Software
Evolution and Change through Code Repository Smells. In Agile
Methods. Large-Scale Development, Refactoring, Testing, and
Estimation, pp. 148-165. Springer International Publishing, 2014.

[88] Fowler, M. Refactoring: Improving the Design of Existng Code.
Object Techonology Series. Addison-Wesley, 1999.

[89] Gwet, K. Handbook of Inter-Rater Reliability: The Definitive Guide
to Measuring the Extent of Agreement among Raters. Advanced
Analytics, LLC, 2014.

[90] Hovemeyer, D. and Pugh, W. Finding Bugs is Easy. ACM Sigplan
Notices, pp. 92-106, 2004.

[91] Kitchenham B., Charters, S. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. In Technical report,
Ver. 2.3 EBSE Technical Report. EBSE, 2007.

[92] Lanza, M. and Marinescu, R. Object-oriented Metrics in Practice:
using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-oriented Systems. Springer Science & Business
Media, 2007.

[93] Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and
von Staa, A. Are Automatically-Detected Code Anomalies Relevant
to Architectural Modularity?: An Exploratory Analysis of Evolving
Systems. In Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development (AOSD), pp.
167-178, 2012.

[94] Mens, T. and Tourwé, T. A Survey of Software Refactoring. IEEE
Transactions on Software Engineering (TSE), pp. 126-139, 2004.

[95] Murphy-Hill, E., Parnin, C., and Black, A. How We Refactor, and
How We Know It. Transactions on Software Engineering (TSE),
2012.

[96] Oliveira, J., Fernandes, E., and Figueiredo, E. Evaluation of
Duplicaded Code Detection Tools in Cross-project Context. In
Proceedings of the 3rd Workshop on Software Visualization,
Evolution, and Maintenance (VEM), pp. 49-56, 2015.

[97] Štolc, M. and Polášek, I. A Visual Based Framework for the Model
Refactoring Techniques. In Proceedings of 8th International
Symposium on Applied Machine Intelligence and Informatics
(SAMI), 2010.

[98] Von Detten, M. Archimetrix: A Tool for Deficiency-Aware Software
Architecture Reconstruction. In Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE), pp. 503-504, 2012.

[99] Wohlin, C. Guidelines for Snowballing in Systematic Literature
Studies and a Replication in Software Engineering. In Proceedings
of the 18th International Conference on Evaluation and Assessment
in Software Engineering (EASE), 2014.

[100] Fernandes, E., Oliveira J., Vale, G., Paiva, T., Figueiredo, E. A
Review-based Comparative Study of Bad Smell Detection Tools:
Data of the Study. Software Engineering Laboratory (LabSoft).
http://goo.gl/qMbRus (accessed November 5, 2015).

[101] JUnit – A Programmer-oriented Testing Framework for Java.
https://github.com/junit-team/junit (accessed November 6, 2015).

